
P aul F. Her m a n
8820 Amnxors llr ive0 o 'Yew Port Riehey, FL M $ 5 5

I guess you could say that this col
u mn was prompted by a s l ip o f t h e
tongue. It's not the first time I' ve put my
foot in my mouth, but it is the first time
I' ve had to pay my dies by writing a regu
lar column for a magazine! Let me ex
plain .. .

ware for the Heath/Zenith 2-100 and PC
compatible computers. As a part of that
business, I send out a regular newsletter
to my customers. From time-to-time (like
every issue) I may make editorial remarks
in the Newsletter, and I usually don't pull
any punches when it comes to taking pot
shots at something that irks me. It's pretty
well known around these parts that I am
an avid Z-100 supporter, and most of the
time, the Customer Newsletter reflects
this minor prejudice.

Well, a couple of issues ago, I made
some brash remarks to the effect that I
didn't believe that REMark and SEXTANT
were giving the Z-100 its fair share of press
anymore. A copy of that issue of the
Newsletter made the rounds at the HUG
office, and made a generally unfavorable
impression. My phone rings, and it's Pat
Swayne. Pat said that he had read the
N ewsletter, and was w o ndering i f I
wanted to do something about the lack of
Z-1 00 articles. I said "sure", and the rest is
history. The 'something' he was talking
about was writing this column.

What's This About?
One of the goals I have in writing this

column is to prevent the Z-100 from dy
ing a premature death. The verdict was
pronounced when Zenith decided not to

January 1989

I own a company that publishes soft

make any more Z-100s, but how long it
takes for the sentence to be carried out
will depend on support of the user com
munity. Not too many would argue the
fact that the Z-100 was a state-of-the-art
machine when it was f irst introduced.
That was back in 1982, around the same
time as the first IBM-PC was released. But
the Zenith machine was technologically
superior to the PC in almost every respect.
Many years rolled by before the PC com
patibles began to match the Z-100's com
puting power and graphics. Even today,
some people would argue about the rela
tive strengths of the Z-100 and the PC
clones. But anyone who is being totally
objective about the situation will admit
that technology has begun to overtake
the Z-100. (Have you looked at a new
Z-386 with VCA graphics lately?)

Just because the Z-100 can't quite
keep up with the new kids on the block,
there is no reason to throw it on the scrap
heap. Unless, of course, you have money
to burn. I decided quite a number of years
ago that trying to keep up with the latest
in computers is a never-ending quest. As
soon as you think you have the fastest,
meanest, and prettiest system on the mar
ket, along comes another that' ll outdo
your new pride and joy. You have to draw
the line somewhere, and stick with a sys
tem that will get the job done. For many
Heath/Zenith users, the Z-100 is where
they draw the line.

Count the Reasons
There are actually quite a few reasons

why you might want to hang on to your
trusty old Z-100. Consider, for instance...

l. If you get a new computer, you' ll prob
ably have to buy new software. That
means you' ll have to learn how to use
it all over again.

2. I have NEVER seen another computer
with a keyboard that can compare with
the one attached to my Z-100.

3. After several years of use, you have all
the bugs and glitches worked out of
your Z-100. Would you really want to
go through that with a new computer
again?

4. There should be a good replacement
parts market for some years to come. If
all else fails, you can buy a used fully
loaded Z-100 for less than a bare
bones PC clone.

5. If you' re like me, your Z-100 has be
come like an old friend. How could
you even think of trading it for one of
those new-fangled AT clones?

6. The Z-100 is paid for . . . n eed I say
more?
What I'm trying to say here is that the

Z-100 you already own may be all the
computer you' ll ever need. It's a good
machine. It may even be considered a
classic some day. However, if someone
offered to trade a Z-386 with FTM moni
tor for my Z-100, the ole' Z-100 would be
gone in a heartbeat. There's a point where
sentimentality has to end.

Where Do We Go From Here?

al Kit" is just sort of an introduction. I
won't get much done other than saying
hello and outlining some ideas for future
columns. Since this is a new column, its
direction and emphasis have not yet been

This first installment of "Z-100 Surviv

15

determined. Your input will help me de
cide where to go from here.

business which is a vendor to the Heath/
Zenith market. In many ways, this will
have a positive influence on this column,
because I make my living supporting the
Z-100. This means that I am familiar with
the pros and cons of the Z-100, and am
experienced with the machine from a
software and hardware standpoint. I have
to keep abreast of all the latest happen
ings that concern the Z-100. But there is a
drawback to being in this position, be
cause I will be somewhat limited in my
ability to review commercial software that
is available for the Z-100.

be more technical in nature than the aver
age REMark article. And I also would like
to put more emphasis on programming,
with lots of code examples. If the feed
back I get from Z-100 owners is correct,
they make up the largest number of RE
Mark readers who are still interested in
recreational computing. Most business
users have moved on to PC, AT or '386
compatible machines by now. And the 8
bitters are in a world all of their own.

column is going to be targeted toward
hard-core programmers. I' ll try to get a
good blend of stuff which is interesting to
the average user. If you own a Z-100,
you' ve probably had it for at least a coup
le of years, so you shouldn't need any
body to tel l you what an AUTOEXEC
batch file does. I think Z-100 users would
like to have some technical stuff they can
get their teeth into. I f I 'm wrong, I 'm
counting on you to let me know.

know what you think this column should
be like. Be sure to include "Z-100 Survival
Kit" at the top of the address, so I can
keep this stuff sorted out of the normal
business mail. One thing in particular that
I'd like to encourage is questions you may
have about your Z-100 (software or hard
ware). I'm not too sure there are many
good sources for Z-100 specific informa
tion anymore, so I'd like this column to
help fill that void. If I don't know the an
swer to y ou r q u estion o r p r o b lem,
chances are I can f ind someone who
does. I' ll try to answer any questions with
a personal reply, and publish the most in
teresting ones (or ones of general interest)
in this column. If I begin to get more let
ters than I can respond to . . . we ll, we' ll
cross that bridge if we come to it.

There are a couple o f subjects I
would like to avoid as much as possible in
this column, even though they are specif
ic to the Z-100. I don't want to get too
deeply involved in ZPC patches and that
kind of stuff. Not that I don't think it is im
portant.. . but I prefer to leave that area
to Pat Swayne. This is not to say that ZPC
patches won't ever be mentioned here. I

This doesn't mean that the whole

I encourage you to write and let me

As I mentioned at the start, I own a

I expect that this column will tend to

just don't want this column to turn into a
"ZPC Update" clone.

The other thing I definitely will avoid
like the plague (unless you tell me other
wise) is using CPM on the 8-bit side of the
Z-100. Face it . . . CPM is extinct. If you
like CPM better than DOS, then I guess
you' ll just have to be content with the
thought that all good things come to an
end sooner or later, The idea of putting an
8085 processor in the Z-100 in the first
place was only intended to bridge the gap
until 16-bit software became available.
Who could have guessed back then that
with the concurrent introduction of the
IBM-PC, the new 16-bit software (which
ran on the 8088 processor) would be de
veloped so quickly? I doubt whether
most Z-100 users have ever used anything
other than MS-DOS (or Z-DOS) on their
machines.

The PC Compatibility Question

these days in trying to make the Z-100 as
PC compatible as possible. Hardware
emulators, Pat Swayne's ZPC software,
the ZHS circuit board, PC style COM
ports, and on and on. From a purely tech
nical computing standpoint, all of these
modifications are attempting to transform
the Z-100 into an inferior machine. Sort of
like paying a mechanic to 'untune' your
car. Is PC compatibility really that impor
tant? Or is everyone just falling in line with
the trend of trying to be compatible?

umn, I' ll talk about the issue of PC com
patibility as it relates to the Z-100. We' ll
look at some reasons why you should be
concerned about compatibility, as well as
situations where you would be better off
sticking with your native Z-100. We' ll dis
cuss some of the different levels of com
patibility which are available with the Z
100, and how each can be used to advan
tage. And I' ll also show you how you can
write programs which will run on either
the Z-100 or PC compatible machines,
and describe some different techniques
for writing 'portable' code.

Probing the Monitor ROM
Another subject on the agenda for a

future column will be a close look at the
Z-100's MTR-100 monitor ROM program.
This ' program-on-a-chip', which is i n
cluded with every Z-100, is a gold mine of
valuable routines for assembly language
programmers. And the MTR-100 data seg
ment holds system information that can
be accessed from any language. The
Z-100's monitor ROM chip should be a
valuable tool for anyone writing Z-100
specific programs, particularly in light of
the fact that the Z-100 is out of produc
tion — this means that there will not be
any more revisions to the ROM firmware.

In this upcoming column I' ll show
you how to find the entry points to the

There seems to be a lot of interest

In the next installment of this col

monitor ROM, and how to use some of
the routines. We' ll also look at how you
can access the MTR-100's data from dif
ferent programming languages.

Programming the Hardware
Many of the peripheral interfaces in

the Z-100 are programmable devices. The
keyboard controller and the CRT control
ler are two good examples. In future col
umns, we' ll investigate how you can do
special tricks by programming these chips.

Most of you know that the Z-100
keyboard can be operated in 'up/down'
mode. We' ll take a look at how that is
done, and some applications that might
require this special mode. I' ll also give you
some tips on how to read the keyboard in
polled or interrupt mode.

programmed to have just about any num
ber of scan lines, up to 500 or so? Or that
the number of characters per line can be
changed? Did you ever wonder how to
write a program that uses the interlace
mode of the Z-100. We' ll look at these,
and other things, that can be done by pro
gramming the CRT controller.

And Graphics
One of my main interests when it

comes to computers, in general, and the
Z-100, in particular, is graphics. So I' ll de
vote a fair amount of time in upcoming
columns to graphics applications, After all,
the Z-100 was designed to be a graphics
machine. It was one of (if not THE) first
computer I know of that allowed graph
ical information to coexist on the screen
with text. No special graphics mode re
quired — just mix the lines, circles, and
colored areas right in with the text charac
ters — a pretty revolutionary idea way
back when. Even today, the Z-100 is able
to keep pace with the newer machines
when it comes to graphics capability. A
Z-100 with a Hughes 16 color V1 board,
running in interlace mode (or with Pro
Scan video) is equivalent in resolution
and number of colors to the IBM VGA (vir
tual graphics array) standard. At this stage
in the game, the main advantage held by
the 80286 and 80386 machines is in
speed. A pixel graphics or CAD program
running on a Zenith Z-386 is going to be a
lot snappier than the same program on a
Z-100. But then, some of us have more
time than money, right>

In Conclusion
I' ll try to keep you abreast of what' s

new for the Z-100, and show you some of
the tricks of the trade in programming ide
as. I'd like this column to become a clear
ing house for information and support for
the Z-100, so if you know something spe
cial about the Z-100, drop me a line, and
I' ll get the news out to the rest of the
troops. I hope you have grasped by now
that the purpose of the "Z-100 Survival

Continued on Page 27

January 1989

Did you know that the 2-100 can be

16

Voice:
BBS:
Contact:
Times:
Location:

Heath/Zenith Electronics Center

(215) 387-4614 or 387-5572
(215) 387-4635 or 288-0262
Colin McGowan
2nd Wed of Month, 7pm-9:30pm
1st 8 2nd Month each quarter
Glading Memorial Church
Loretta 8 Cheltenham Ave.
Philadelphia, PA 19124
(at Oxford Circle near Rt 1)
3rd Month each quarter
Philadelphia H/Z C8 E Store
Roosevelt Blvd. 8 Bustelton
Philadelphia, PA 19124
(215) 288-0180

Pittshurgh HUG (PGH-HUG)

3482 William Penn Highway
Pittsburgh, Pennsylvania 15235
Voice: (412) 824-3564
BBS; (412) 824-3732
Contact: Phillip Sidel, President

Times: 3 r d Tuesday of Month, 7pm
(Except June, July, December)

(412) 648-7384

7111 Blanco Road

12022 C Garland Road

Charles Horn

Times: C a l l for Time/Date
Location: Call for Location

T laX I I l trr

Dallas/Forth Worth Heath/Zenith I)sera' Group

Dallas, Texas 75218
Voi ce: (214) 327-4835 (Store)
BBS: (214) 742-1380
Contact: Jon Gauthier (214) 997-0157

Times: 1 s t Tuesday of Month, 7:00pm
Location: Heath/Zenith Elec. Center

12022 C Garland Road
Dallas, TX 75218

San Antonio Heath Users' Group

San Antonio, Texas 78216
V oice: N / A
BBS: (512) 341-0586
Contact: N/A
Times: 1st Wednesday of Month, 7:30pm
Location: San Antonio H/Z Elec. Center

7:30pm

(414) 547-7966

BBS: N/A
Contact: Roy Hartley — (804) 428-9205

John Smith — (804) 468-6246
Times: 1 s t & 3rd Thursday of Month,

Location: Heath/Zenith Elec. Center

11 ia'I Irma'in

Milwaukee Heath Users' Group (MHUG)
4439 N. Marlborough Drive
Shorewood, Wisconsin 53211
Voice: N/A
BBS: (414) 548-9866
Contact: Leif Pedersen, President

Albert Kalina, Treasurer
(414) 962-2699

Location: Heath/Zenith Elec. Center

.Iklllld II l IrliliIIII

Anderson HUG
401 Tiffany Drive
Anderson, South Carolina 29625-1815
Voice: (803) 225-0084
BBS: N/A
Contact: John R. Miller

Vir j i naiaa
Tidewater Heath Users' Group (THUG)

1055 Independence Boulevard
(Haygood Shopping Center)
Virginia Beach, Virginia 23455
Voice: (804) 460-0997

7111 Blanco Road
San Antonio, TX 78216

Times: 3 r d Saturday of Month, 1-4pm
Location: Milwaukee School of Engineering

Walter Schroeder Lib. Bldg
Room L100
500 E. Kilbourn Avenue
Milwaukee, Wl

Continuerl from Page 16

Kit" is to help you get the most mileage
out of your Z-100 computer. I' ll not try to
talk you out of getting a new machine, if
that's what you have your heart set on,
but for those of you who aren't ready to
take it to the barn, stay tuned.. . relief is
on the way!

c/o Heath/Zenith Electronics Center

'Fltee 'Dciie 'Diok(
JUPITER is a unique program that manages information about peop/e.
Ideal for business and home, it maintains client, sales, and supplier data.
manages club, church, and school records, and creates correspondence.
JUPITER prepares letters, envelopes, labels, invoices, phone directories,
sales summaries - whatever — and provides instant access to thousands
of records Now, try JUPITER's fresh approach lo database management
with absoiuieiy no cost or obligation.Sale

ZCM-149N:
RM Color Monitor

notes and transactions Much more
Manages detailed records including '-.~'l
than a mailing list manager =.i "-. <".r
I ncludes sample programs that prepare .~ ' ~ ~~ @»- ~ „ '

&
correspondence and reports.

Easy and tun to use. Self-teaching
with on-screen examples and adviceZ~ Video Can)

$895+ Blippng For all PC's and Zenith Z100's
using MS-DOS V2.0 or higher. 256K.
Costs only $99 95.

"Every parr oiit is eiiicieni,
weiI organized snd easy ro use"

— Joseph Katz, REMark

Please send me a iree JUPITER demonstration disk.
V

2 Name

Address

City. State, ZIP

Phone (I G Evening Day t i m e
Ask Us to Beat Any Advertised Price!

First
Capitol

R Computer

¹16 Algana Drive
St. Peters, MO 63376
Orders: 1-8tm-TO-BUY-IT
Tech: (314) 447-8697

I20t I 747 2063

131 Jumping Brook Road, Lincrott. NJ 07738

gprvulinu Q ~ v

iJ

cJ

January 1989 27

Pnaal F. Hermann
862Q .amazon Dr ive

l lew Port Ric hei-. FL :W S 5 5

O '0

ness.

Hello again! I was hoping my intro
duction to "Z-100 Survival Kit" in the last
issue would arouse your interest. Glad to
see you' re back! We didn't cover much
serious ground in that first installment, but
now that we have the formalities out of
the way, we' re ready to get down to busi

As promised, we are going to take an
overall look at the question of PC com
patibility for the Z-100. Over the past year
or two, the goal of being compatible with,
and emulating the PC's has received a lot
of attention. Is it really that important?
Why is it so difficult to achieve? Is it worth
the effort?

software that runs on both the native
Z-100 and PC compatibles. I' ll also show
you how you can write your own pro
grams that run on either type of machine.
There's a lot to talk about, so let's get

Beyond compatibility, we' ll look at

To understand the quest for compati
bility in the proper light you must realize
that most computer users aren't interest
ed so much in how wonderful or powerful
their computers are, but in what the ma
chine can do to help them with practical
day-to-day problems. Things like balanc
ing the books, keeping track of inventory,
analyzing statistical data, or even drawing
pictures. You quickly find that the power
behind the machine is in the software. If
nobody has written a program for your
computer that does what you need done,
then you' re just out of luck.

A little history . . . I n the beginning
(circa 1975) most personal computers
were created about equal. Hardly any of
them would run the same software, be
cause they were all different. The only
unifying influence was the CPM operating
system, but it was far from a standard (by
today's standards). For the most part, if
you wanted software to do a specific task,
you had to write i t yourself, or hire it
done. As the years went by, the situation
really didn't change much until IBM an
nounced their own personal computer.
And at that moment, the computer indus
try forever changed (for better or worse).
Amid protests that IBM had stymied tech
nological innovation, a new standard had
been set. My use of the word "standard"
here should not be taken as in "standard
of excellence", but should be understood
as meaning "something to conform with".
Whatever your viewpoint about the IBM
PC revolution, you will have to admit that

it caused the computer industry to start
making computers which all looked and
acted vaguely the same,

One of the main consequences of
this turn of events is that software com
panies now had a stationary target to aim
at. Where once there were just a few me
dium-sized software companies (mostly
companies selling operating systems and
development tools), now new companies
sprang into existence almost overnight.
Companies like Microsoft and Lotus De
velopment began to show Wall Street
that computer software was big business.
As software development became more
sophisticated to meet the needs of an
ever-demanding audience, small com
panies began to be edged out of the soft
ware business because they couldn' t
compete.

Back to the present, we f ind that
most of the flashy high-powered software
we would like to use is sold by million
dollar software companies (they' re the
only ones who have the resources to pro
duce it). And, naturally, being in business
for a profit, they only write software for
computers that have a substantial user
base. Which means mainly PC Compati
bles and the Apple Macintosh. All others
need not apply, including the Z-100.

Why Do We Want Compatibility?
The obvious reason for wanting PC

compatibility is to take advantage of pro
grams that aren't available for the Z-100.
There are literally tens of thousands of

s tarted.. .

The PC Compatibility Question
To someone unfamiliar with the per

sonal computer scene, i t must seem
strange that one of the main pursuits is
t rying to get your computer to do the
same thing that everyone else's does. Par
ticularly when the machine you have is
superior to that owned by your neighbors.
And from a purely hobbiest viewpoint
(programming being the hobby), it is ridic
ulous. Give me a Z-100, and I' ll write a
program that will run rings around the
nearest PC/XT clone.

February 1989 23

software titles available for the original
IBM-PC and its descendants, while the list
of commercial software written specifical
ly for the Z-100 is composed of only a few
hundred programs.

But there are other reasons you might
consider compatibility an issue. One of
the most important of these is the ability
to use the software interchangeably on a
Z-100 and PC c ompatible computer.
Many of you now own a PC compatible
computer, as well as a Z-100. You'd like to
be able to use the software on both ma
chines, right> (We won't mention soft
ware license agreements here). There are
two ways of doing this.. . buy programs
that run on either machine, or fix the
Z-100 so it can emulate a PC.

If you are considering buying a new
PC compatible in the future, this gives you
another reason to seek PC compatibility
with your present Z-100. If your Z-100
could run PC software, you could go
ahead and start using the programs you
will use on the new machine. And you
won't have to buy all new programs when
you make the switch.

Emulating the PC Compatibles
The Z-100 is not very similar to the

IBM-PC. As a matter of fact, you have to
really look hard to find any similarities at
all. The bus is different, the video layout
isn't even close, the I/O chips aren't the
same, the keyboard is different, the hard
disk interfacing is incompatible. About
the only things in common between the
two machines are the 8088 CPU chips.
Actually, it is a credit to the MS-DOS oper
ating system that the Z-100 and IBM-PC
run any of the same programs.

The secret to conquering this appar
ent list of incompatibilities lies in success
ful emulation of the PC's features. This is
accomplished with more or less success
by using special software, special hard
ware, or both.

Hardware Emulation

ware PC compatibility with your Z-100.
The GEMINI Board and the UCI Easy-PC.
Both of these emulators plug into the Z
100 and provide fairly good results. I'm
not going to spend any time describing
how they work, because that has already
been done. Reference the following arti
c les for more information. . .

GEMINI Board REM ark January 1986,

UCI Easy-PC REMa rk June 1986,

There are two alternatives for hard

November 1986
SEXTANT P24

August 1986
SEXTANT 825

in the Z-100.

gram that communicates directly with the
PC COM ports will not work using the
GEMINI or UCI boards. UCI does have an
optional (extra cast) Easy-I/O board avail
able which solves this problem by provid
ing the needed PC compatible serial
ports.

Software Emulation

accomplished to an amazing level with
out any additional hardware. The popular
ZPC program available from HUG is the
best and most widely used example of
what can be done through software emu
lation. Some of you newcomers may not
know that there were predecessors to
ZPC (like PCEM.COM) which established
the feasibility of software PC emulation
on the Z-100.

ZPC doesn't provide the level o f
compatibility achieved with the hardware
emulator boards, but i t c o mes c lose
enough to be a contender when you con
sider the difference in price. Software em
ulation wil l usually require that some
changes or patches be made to the prog
ram before it will run. These are required
where the PC program is trying to com
municate directly with a port or o ther
hardware that doesn't have a counterpart

The ZPC software approach can be
helped along by adding a little hardware.
The ZHS circuit described by Pat Swayne
(author of ZPC) helps by making more PC
programs run with fewer (or no) patches.
The board may be homemade, or is com
mercially available from Scottie Systems.
Another help is the addition of an IBM
style COM port for serial communication.

Limitations to Emulation
There is one important thing to con

sider about all the PC compatibility solu
tions presently available for the Z-100.
They are all already absolete! One of the
main reasons we are trying to emulate the
PC compatibles in the first place is to be
able to run all that flashy, state-of-the-art
software. But have you considered that to
effectively use a lot of PC software you
need EGA or VGA graphics — neither of
which is supported by ZPC or the GEMINI
or UCI boards. It's only a matter of time
before you won't be able to find PC soft
ware that uses the old CGA modes.

The Ultimate Emulation

sation about emulation here, but one im
portant consideration has been left un
said until now. The best way to run PC
programs is to have a PC compatible com
puter on the desk next to your Z-100. By
the time you purchase one of the hard
ware solutions to compatibility described
above, you could have made a substantial
down payment on a real PC clone, (I
guess maybe I should say Zenith PC!)

Emulation of the IBM-PC can also be

We' re about to wrap up our conver

DEVICE=ANSICON.DVD

Programs That Run on
The Z-100 and PCs

Kit" deals primarily with the need to run
PC programs on a Z-1 00. We' ve discussed
the standard solution, which is trying to
turn the Z-100 into a near-PC compatible.
But that's only half the story — especially
if you do any programming. A lot of soft
ware is available that will run on both ma
chines (without emulation). And if you
know what to look out for, you can also
write your own software that runs on the
Z-100, as well as PC compatibles.

Programs That Don't Care
Any program that uses MS-DOS func

tion calls whenever it communicates with
a peripheral device (including the screen)
should run equally well on a Z-100 or a PC
compatible. Such a program is called a
"Generic MS-DOS" program (sometimes
referred to as "well-behaved", because it
doesn't deal directly with the hardware).
Until the recent advent of windowing en
vironments, most assemblers and lan
guage compilers were generic MS-DOS
programs. For instance, Microsoft's MASM
assembler will run equally well on a Z-100
and a PC clone. So will the Microsoft 'C'
compiler (but not Quick-C).

One big problem with this approach
is in screen control. MS-DOS doesn't es
tablish any standards for doing things like
clearing the screen, positioning the cursor,
etc. This means that a "well-behaved"
program must be content with a scrolling
type of text display, and no graphics. A
partial solution to this problem is for a
program to use the ANSI.SYS screen driv
er. The ANSI.SYS driver (called ANSICON
.DVD on the Z-100) provides a standard
set of screen and cursor control escape
sequences.

Any PC program that expects to use
the ANSI.SYS driver will specifically men
tion this fact in its documentation. If it
does, there's a good chance it may run on
the Z-100 (or any MS-DOS computer). To
t ry it, do the following. . .
1. Copy the f i le ANSICON.DVD from

your MS-DOS disk into the root direc
tory of your boot-up disk.

2, Edit (or create) your CONFIG.SYS file
by adding the following line;

3. Be sure the CONFIG.SYS file is in the
root directory of your boot-up disk.
Then, reboot the computer to load the
ANSI driver.

4. Now you' re ready to try the program.
Having the ANSI driver loaded won' t
make any difference unless the prog
ram uses the special ANSI escape se
quences for screen and cursor control.

Want to write your own programs
that use ANSI escape sequences for por
tability? Here are some commonly used
ANSI escape sequences;

This installment of "Z-100 Survival

Even though these hardware solu
tions offer very good PC compatibility,
there are some rough edges. For instance,
neither will solve the problem of the in
compatible Z-100 serial ports. Any pro

24 February 1989

ASCII Command
Es«[n;mH
Esc[nA
Esc[nB
Esc[liC
Esc[nD
Esc [2j
Esc[K

The 'n' and 'm' letters indicate an
AS(I I decimal number. The Programmer's
Lltility Pack and most good MS-DOS refer
ence texts have more information about
the ANSI escape sequences.

The main problem with programs
that use MS-DOS for everything is that
they are noticeably sluggish when writing
to thpscreen (with or without ANSI,SYS).
The only way to avoid the slow screen
output of DOS is to use BIOS routines or
write directly to video memory. And if the
program uses graphics at all, the program
mer has no c hoice, because MS-DOS
doesn't do winclows (or graphics).

Programs That Differentiate
If a program uses true graphics (lines,

circles, filled areas, etc.), or writes text di
rer.tly to the video memory, th en it must
have access to at least two unique sets of
graphics routines. One set for the Z-100,
and another for the PC compatible. There
are several general schen1es that could be
iised to determine which routines should
be used. Here are some examples:
1. Thc graphics routines for each ma

chine could be kept in seperate object
libraries or files. When thp program is
configured for a particular computer
the appropriate set of graphics routines
is linked with the main program to
make the final executeahle program.
This method results in the fastest exe
cution time and smallest code size, but
is difficult to implement.

2. The graphics routines coulcl be organ
ized into a device driver or r11emory
resident library. This method is not
easy to in1plement with high-level lan
guages, and suffers from slow c'ailing
times for routii1es in the library.

3. The program could contain al l the
graphics routines required for any con
figuration, and decide which routii1es
to use at run time through coi1ditional
branching. A program which uses this
method will have the advantage of
running on e i ther machine without
reconfiguration, but will suffer some
what in code size and speed.

Regardless of whir.h of these meth
ods you might choose for your own prog
rams, they all have one requirement. At
some point, they need to know the host
computer type so they can choose the
appropriate graphics routines. If thp pro
gram will be configured ahead of time for
a certain computer (as in 1 or 2 above),
the obvious way to determine the host

February 1989

Hex Values
1858 n 38m 48
1858n41
18 58 n42
18 58n43
18 58n 44
18 58 324A
18 5V 48

contact.

Z188:

PC:
t i ne
COMMON:

MOV
MOV
MOV
CMP
JNE
CMP
JNE

JMP

Function
Move c ursor to I'ow i1, colul11I1 f11'.
Mnvp ctirsnr up 'n' rows.
Move cursor down 'n' rows.
Move ctirsor right l1 «OILN11ns.
Move ctirsor left 'n' columns.
Clear sc I'PPI1, i11ove cul'sol' to top left
Erase to end of line

col11pLlter i s to ask the user. But if the
program will need to dctcrmine the host
computer type each time it is run, a more
convenient way would be appropriate.

I have found that a reliable way for a
program to determine its host computer
type is to check two bytes of system
memory located a t 0 0 40:OOOOH and
0040:0003 H. If this is a Z-100, the area be
ginning at segment 4013 is the BIOS jump
table, and bytes OH and 3H tvill both be
OE9H (a jump instruction). If this is a PC
r:ompatiblp, the area at segment 40H is
the BIOS data area, and OE9H's will not be
present. Here's how it looks in assembly
language:

Writing Your Own Programs
General Guidelines

rams that run on the Z-100 and PC com
patibles, hprp are some tips; Kr ep it as
simple as possible. If your application
doesn't requirefancy graphics, don't wor
ry about it. Generic DOS programs are
definitely the best bet when practical. If
necessary, use the ANSI device driver for
more flexibility in text screen displays.
Don't forget that an easy way to clear the
screen using MS-DOS is to issue 25 line
feeds.

from special function, keypad, and arrow
keys. There arc no stan«lard ASCII defini
tions for these keys. If you must use input
front keys other than ASCII charac'ters,
symbols, and OLN11bers, then you will have
to write a keyboard iitfiut routine that rec
ognizes the difference between the Z-100
and PC keyboards.

disk input/output and commtinication to
serial an«I parallel ports. Most high level
languages usp MS-DOS functions, but
avoicl using any language features that de
pend on BIOS calls or clirect hardware

If you want to write your own prog

Stay away from using keyboard input

Use MS-DOS function calls for all

COMMON

AX. 4OH
ES. AX
SI. 8
BYTE PTR ES.ISI I . 8 E 9H
PC
B YTE PTR ES:ISI+3 I 8E9 H
PC

ware.

get BIOS segment

If you prograin in BASIC, the easiest
way to write programs for the Z-100 and
PCs is with intcrprctpcl CW-BASIC. Most
programs will operate correctly on either
mac bine. But beware of the SCREEN coin
mand. You will need to take into consid
eration that the colors and screen resolu
tion art different between the twn types
of «omputprs.
Wrapping It Up

tion of PC: compatibility in this iiistallment
of "Z-100 Survival Kit". It is ai1 issue which
is important tn many Z-100 us> rs. Howev
er, I cion't feel like compatibility holds any
ser rets to thp continue d popularity of the
Z-100. Running PC' software on a Z-100 is
just another way of saying "I wish I had a
Z-248 instead".

support base, it will be achieved through
the strengths of the niachine itself — run
ning software dc signed to take full advan
tage of its features. In fut i irp columns,
we' ll look at ways to take advai1tage of
some of those powerful features.

common code resumes here

Continued from Page 15
lutinns like 640 by 480, we are starting to
get some pretty good looking i;ircles. Thc
earlier machines always coughed up
something which looked like a football at
bpst.

n1aintainS itS SCreen aspect ratio such that
vertical ancl horizontal resolutions appear
balanced on the screen and on the printer
as well. Aspect ratios are selectihle «luring
setup but I a m c omfortable with t he
recomn1ended aspect ratio of RIX Soft

ECAPairit
RIX Softworks, Inc.
18552 MacArthur Blvd.
Suite 375
Irvine, CA 92715
(714) 476-8266
Microsoft Mouse PCPaint
MSC Technologies
2600 San Tomas Expressway
Santa Clara, CA 95051
(408) 988-0211
Pallette
Software Wizardry
8 Cherokee Drive
St. Peter~, MO 63376
(314) 477-7737

j ump ins t r u c t i o n >
n o, go t o P C r o u t i n e
c heck another p l a c e
n o. go t o P C r o u t i n e
Z188 graphics r o u t i n e
join common code
PC compatihle graphics rou

WP've takei1 a good look at the ques

If the Z-100 is tn have a lasting user

should note here that EGAPaint

25

ur viva
it

O '0
P;jul F. I l c rnsnn

o n the screen. . .

Writing Text to the Z-100 Screen

program is the ability to display text on
the computer screen. It you write some of
your own programs, there may he several
d ifferent methods available to you for
outputting text to the screen. We' re going
to look at some of those methods in this
installment of Z-100 Survival Kit.

L et Me Count the Ways. . .

possible ways that can be used to get text

1. High-level routines
2. DOS function calls
3. BIOS calls
4. Monitor ROM calls
5. Writing directly to video memory

High-level routines can be thought of
as the resident print commands available
in most programming languages. For in
stance, the PRINT and PRINT USING
commands in BASIC. Another example
would be the printf o or putso function in
the 'C' language, If you have done batch
file programming, the ECHO command
may also he thought of as a high-level text
output routine. These are commands (or
function calls) which r«ake life easy for
those who are programming with a high
level language.

DOS function calls offer a quick and
easy way of outputting text for the assem
bly language programmer. Some high-lev
el languages (noteably BASIC and FOR
TRAN) make it very awkward to use DOS
function calls in a program, but quite a

April 1989

First off, let's take a look at all the

One requirement o f a lmost every
tions.

few (like 'C' and PASCAL) include library
functions specially used for DOS Func

BIOS calls might be used when speed
is critical to an application program. Call
ing the BIOS for text output is noticeably
faster than most built-in language print
functions. But in exchange for the in
crease in speed, you must give up the
portability (the ability to use the program
on more than one type of computer) that
normally comes with using high-level rou
tines or DOS function calls.

will give much the same results as BIOS
calls, but one more layer of overhead will
be stripped away.

Writing directly to the video memory
is the most versatile way to write text to
the screen. It is also the most complicated
ancl least portable way, and should there
fore he reserved for those applications
where custom fonts or fast display are im
portant. Unlike the PC compatibles, the
Z-100 has no dedicated text mode where
ASCII text can bc written directly to video
memory. Thus, in order to display text on
the Z-100 screen, you must actually trans
fer the font design to the screen one pixel
or byte at a time.

Now that we have the preliminary
descriptions out of the way, let's take a
more cletailed look at each of these alter
natives.

High-Level Routines

dabble in programming) will never use, or

Calls to the MTR-100 monitor ROM

Most programmers (or those who

need to use, anything other than the
built-in capabilities of their language inter
preter or compiler for text display. As long
as the PRINT statement will do what you
need to do, there is probably no need to
add extra complication to your life. I'm
not going to give any examples of using
these high-level routines because that
should be documented thoroughly in
your programming language manual.

What I am going to talk about, with
reference to high-level text routines, is un
der what circumstances you might need
to use an a l ternative text o u tputt ing
scheme. The obvious case, of course, is
where more speed is required. You can
greatly speecl up text display hy using
BIOS calls, or writing directly to v ideo
memory. Using DOS function calls proba
bly won't do much to help text display
speed, since the high-level routines usual
ly make use ot DOS calls anyway.

Another case where the high-level
routines xvon t clo the loh Is Iv l lefl you
need text to be d isplayed in positions
other than the normal rows and columns
on the screen. Most pixel graphics and
CAD programs, for example, will allow
you to place text anywhere on the screen,
on a pixel-by-pixel basis. In order to do
this, they must write directly to the video
memory. If you want this same type of ca
pability in your own program, you also will
have to write directly to video memory.

Along the same lines, if you want to
use custom text, which is not a standard
size (i.e., 8 x 9 pixels), you must use di
rect video memory access. Text charac

29

ters which are smaller or larger than the
normal font, as well as italic text, are ex
amples of the possibilities.

Another situation which may require
use of a DOS or BIOS routine is when you
don't want your program to be i n ter
rupted when a user types Control-C at the
keyboard. Many high-level languages do
not allow you to disable this feature dur
ing screen output, or keyboard input.

One last note about high-level text
output routines. Be sure to get familiar
with whatever resources are offered with
your particular language interpreter or
compiler. It is possible (but not likely) that
the text output routine already uses the
BIOS for output, thus making it unneces
sary to look further for a speed upgrade.
Most languages offer more than one alter
native for displaying text on the screen
check them out. If you are working with a
compiled language, your compiled pro
gram will usually be much smaller if you
stay away from the more versatile print
functions (like printfQ in the 'C' language,
or PRINT USING in BASIC). For instance,
in the 'C' language, using the printfo func
tion may cause the compiler to drag in all
of the floating point functions, increasing
the program size by several thousand
bytes.

DOS Function Calls
The MS-DOS operating system, in ad

dition to taking care of disk I/O responsi
bilities, has an entire l ibrary of useful
functions which may be called from a user
program. These functions aren't describ
ed in the Users' Manual that accompanies
MS-DOS. To find out about them, you
have to either buy the Programmer's Utili
ty Pack (PUP), or pick up a book about
MS-DOS at the bookstore. If you' re a pro
grammer type, you really should invest in
the PUP while they are still available from
Heath/Zenith. You' ll wonder how you
ever lived without it! Or if you' re just curi
ous, most bookstores these days have
dozens of books describing the inside
workings of DOS. Don't worry about find
ing one that describes the Z-100 (You' ll
be looking for a long time). The MS-DOS
function calls for any machine that runs
DOS are the same.

which deal specifically with output to the
computer screen. They are numbers 2, 6,
and 9. Here is a brief description of each...

Function 2
Display Character

This function is used to display a sin
gle text character on the screen at the cur
rent cursor position. Load register DL with
the character, and call interrupt 21H with
register AH set to 2. Like this. . .
MOV DL, 'P' ; prepare t o d i s p l a y a 'P'

MOV AH, 2 ; with function call 2
INT 21H ; output t o s c r e e n

DOS screen output functions. It will break

There are three DOS function calls

MOV DX, OFFSET TEXT
MOV AH, 9
INT 21H

to the Control-C routine if Control-C is
typed at the console during the time the
function has control.

Function 6
Direct Console I/O

This function is similar to number 2,
except that it also allows you to input
characters from the keyboard (which we
aren't concerned with here). Load register
DL with any printable character, load AH
with 6, and call interrupt 21H.
MOV DL, 'P' ; we' l l d i s p l a y a 'P' again
MOV AH, 6 ; this time using function
INT 21H ; out put to screen

One important thing to note is that
DOS function 6 does not check for Con
trol-C at the keyboard. If it is important
that your program not be interrupted, this
is the screen output function to use.

Function 9
Display String

This function allows you to output an
entire string of characters to the screen at
one time. To use it , load register pair
DS:DX with the segment and offset of the
start of the text string. Load AH with 9,
and call interrupt 21H. Note that the text
string must end with a dollar sign ('$')
character, which is considered the string
terminator. Example.. .

T EXT DB ' He l l o t he r e ' g ' the
This example assumes a couple of

things. First, that the register DS has pre
viously been set to the segment contain
ing the label TEXT. It also assumes (as in
dicated by the ...) that some instructions
(like a RET, or the end of the program) oc
cur between the function call and the
TEXT label, since obviously, the DB in
struction cannot be interpreted as code
instructions.

sign to be printed>". Answer. . . y ou' ll
have to use function call 2 or 6,

How to Use DOS Function Calls
in Your Programs

The next question which seems obvi
ous is how to use these function calls in
your programs. Obviously, the functions
are easy to handle with assembly lan
guage, as the examples above show. Us
ing the calls with other languages may not
be as easy. Some languages may have
provisions for calling DOS functions (like
most 'C' and Pascal compilers), while oth
ers may make their use very difficult (like
BASIC). Even among different implemen
tations of the same language (like Micro
soft 'C' and Turbo 'C') the methods for us
ing DOS functions may differ.

Using Microsoft 'C' as an example,
here is how we would use DOS function
number 9 to print a string. . .

You might ask, "what if I want a dollar

point

outp
us

cal l 6

main()

other instructions

text string

D X to t e x t
e function call 9
u t t o s c r e e n

CODE SE GMENT

bdos(9. t e x t ,

END START

START: MOV DX. OFFSET TEXT

puts("Hel l o t h e r e ! ") ;

char text!14] = " Hello t h e r e ' 5 " ;

main()

)
Well, yes. That's the way I would nor

mally output a string to the screen. It' s
hard to imagine writing an entire 'C' pro
gram using DOS function 9 for screen out
put. But if your program is short and sim
ple (you don't get much shorter or simpler
than "Hello there!"), you might be inter
ested to note the following statistics; our
example above, using the bdos o func
tion, compiles into an .EXE program which

The bdos0 function will load register
DX with a pointer to the start of the string
text, load register AL with a zero (this is a
dummy argument, since we don't need
register AL), and then execute DOS func
tion number 9.

Most 'C' and Pascal compilers come
with a function similar to the Microsoft

bdoso function, but the syntax will vary.
Most of you who program in 'C' will

be asking "wouldn't it be a lot easier to
use the puts() function!, like this. . .

is 2357 bytes long. The example using the
puts() function compiles into a program of
5245 bytes. And if you wanted to take it
another step, and use the printf o func
tion, the result is 7233 bytes.

bly language buffs are laughing, because
writing this simple example in assembly
language ...

TEXT DB 'He l l o t he r e ' $ '
C ODE END S

. . . will result in an executable pro
gram that takes only 22 bytes!

ples of 'C' and assembly routines to make
use of DOS function calls, I' ll acknow
ledge that most of you probably use BA
SIC as your primary computer language.
BASIC is one of those rather stiff lan
guages (oh, I see the letters coming, now!)
that doesn't have a great deal of flexibility
for communicating with DOS or the hard
ware directly. But where there is a will,

April 1989

This is the most bare-bones of all the

Okay, now I notice that all the assem

Now that I have shown some exam

ASSUME CS FDODE. DS: CODE
ORG 188H

start at 188H for .COM program

MOV AH, 9
INT 21H
INT 28H

this function ends the program

30

t here is a way. Witness the following. . .
Use DEBUG's mini-assembler to en

ter the following program fragment (don' t
include the comments). You can do this
by running DEBUG, and then giving the
'A' command.

The Z-100 BIOS (Basic Input/Output
System) contains a user interface which
may be used to communicate with the
disk drives, console, printer, or auxiliary
device. Using the BIOS interface is some
thing that is fairly simple once ou get the

CCASSIFIFO AOS

MOV BP, SP
MOV SI IBP+4i
MOV DX, iSI+1)
MOV AH, 9
INT 21H
RETF 2

LIKE NEW Orchid Designer VGA $250.00. R. Speidel,
Box 95E, Rt. 1, Emrnaus, PA 18049.

Z-IOO, PAINTEA. MODEM $$$$$ Extras. Call for list.
$900.00.(808) 878-6096.

get the stack frame
get address of string descriptor
get pointer to start of text string
u se func t i o n 9
display the string
r eturn to ca l l i n g p rogram

hat ouNow if you unassemhle w y
have entered (using the 'U' DEBUG com
mand), you can see the hexadecimal
numbers that make up this program. They

C D. 21, CA. 82 , 8 8

58 TEXTS =" Hello t h e r e ' S"

t urn out to be . . .
8 9. E5. BB. 76 , 8 4 . B B . 5 4 , 8 1 , B 4 , 8 9,

This sequence of bytes actually rep
resents the small program subroutine giv
en in our example above. You can call this
assembly language subroutine from a BA
S IC program like this. . .

98 FOR I=l TO B.READ PROGg(I):NEXT
95 DATA &HE589,&H7688.&HBB84.&H8154
96 DATA &H8984.&H21CD.lkH82CA,&H8888
188 DEF SEG
118 DOS9F=VARPTR(PROGg(8))
128 CALL DOS9F(TEXTS'
138 PRINT

our text string
read the assembly program
the program (decimal integers)

use BASIC s data segment
get the start of the program
cal l w i t h st r i ng a s a r g ument
do a CR/LF

hang of it, but a proper tutorial is not real
ly possible in the space we have left here.
We' ll do justice to using the BIOS inter
face in a future installment of Z-100 Sur
vival Kit, but for now I' ll just give you
enough information to output characters
to the screen (since that's the main sub
ject we' re trying to cover).

is affectionately know as BIOS CON
FUNC. That's what they call it in the Pro

The BIOS function we' re interested in

Are you reading

Subscribe now!

Want New And Interesting Software?

Note that the hex integers used in
the DATA statements to make the pro
gram have each byte pair reversed. This is
because BASIC stores an integer with the
least significant byte first in memory, then
the most significant byte. Also, if your as
sembly language routine doesn't use an
even number of bytes, don't worry — just
stick a zero on the end.

If this kind of thing interests you, you
might want to refer to the Appendices of
your BASIC manual for a more thorough
description of how to use the CALL state
ment. Microsoft suggests writing the origi
nal program with an assembler, and then
loading it with the BLOAD command, but
for short assembly routines, I like my way

For the most part, it is ridiculous to go
through all of this trouble to display a
string on the screen using a DOS function
call from a high-level language. But there
are times when the knowledge of how to
do so may come in handy.

BIOS and Monitor ROM Calls
Up until this point, all of the tech

niques we have discussed for placing text
on the screen have been useable for any
MS-DOS based computer. So if you have
a PC clone taking up space on the desk
next to your Z-100, what I have said
would apply to it, too. But from here on
out, we' re talking Z-100 only. Making
BIOS calls, monitor ROM calls, and writing
directly to video memory, are very ma
chine specific actions. Any use of these
methods on a PC compatible is definitely
guaranteed to cause an instant crash.

April 1989

a borrowed copy of REMark?

better.

CONFUNC

'P' t o DEBUG

CODE SE GMENT

ORG 51H
CONFUNC LABEL FAR
B IOS END S

BIOS SEG M ENT AT 48H

MOV AL, 'P'

MOV AH, 8
CALL CONFUNC

grammer's Utility Pack, at any rate. You
call the BIOS functions by making a long
call to a jump table located at segment
4 0H. The a d d ress o f the BIO S
CONFUNC vector is 40:0051 (hexadeci
mal). You can use the BIOS CONFUNC
routine to read or write a character to the
console, check console status, etc. To
write a character to the console (another
word for the computer screen), you sim
ply load register AL with the character,
load AH with a zero, and call 40:0051.
L ike this. . .

C ODE END S

this code is to tell the assembler where
the BIOS CONFUNC vector is located. If
you will be using DEBUG to assemble the
program, you can use the 40:0051 address
i n the call statement . . .

MOV AH. 8
CALL 48:8851 call BIOS

The BIOS CONFUNC character out
put routine ends up calling the MTR-100
monitor ROM to get its work done. It uses
an entry point into the MTR-100 named
MTR SCRT which is at address FE01:
0019. If you prefer, your program can call

The purpose of the first portion of

MOV AL, 58 t hi s i s a

d isplay a 'P'

code f' or CHR WRITE function
do it to it

rest o f p r o g r am

CODE

SCRT
MTR

C ODE END S

code .. .
MTR SEG MENT AT FE81H

ORG 19H
LABEL FAR
ENDS

CALL SORT

The advantage of going straight to the
MTR-100 routine is to tweak the last bit of
speed out of the system. To give you an
idea of the speed difference, I tried dis
playing 50,000 characters using a looping
assembly language routine. The results...
using the BIOS CONFUNC routine took
23 seconds. And using the MTR-100 SCRT
routine, the time was 17 seconds. Just for
laughs, I also tried using MS-DOS function
call 2 — it took 58 seconds.

must say that for most programs it is more
convenient to use the BIOS because of
the other console functions available.
Another advantage to using the BIOS
interface was to avoid problems if a new

the monitor ROM directly by using this

Check Oltt HUG Software

SEGMENT
MOV AL, 'P' d isplay a 'P'

using the MTR-188 ROM routine
r est o f p r o g r am

In defense of the BIOS interface, I

Prime H/Z Enhancements!

VCE-150: Flin>inate video card. Install

Clock Uses no Slot
FBE Smar(Watch< On-line <late/time.
Installs under B(OS/Monitor ROM.
1en year l>attery. 5<>(tware included.
Works with all Heath/Zenith MS()OS
co>npute>s, I or PC's $35; Z-I00 $36.50.
Module $2/.50

H jZ-148 Expansions
ZEX-1487 Adds 1-1/2 card slots.
$79.95. ZEX-148 r S>nartWatch $10'.).95
ZP148: VAI. rl>ip expands existing
640K lnemor to 704K. $19.95

H//Z-150 Stuff <Nrit lor '>s7. > Ss or) sis)

E(iA/V(IA card. All plug ln. Includes
VFIV(-150, RM-150, Reqt>lrrs.'iRAM
chip. VCF.-150 $39.95. SRAM (.I>ip $15
VEM-150: Card combines existing two
BIOS ROM's into one so<.ket. $34.95
RM-150: Decoder PROM used in
removing video card. With detailed
instructions. $9.95
ZP640 PLUS: Expand to 640K/704K
by adding 2 banks o(256K RAM chips
(not included). ZP640 VLUS $19.95
(lirst one); $9.50 therea(ter.
LIM 150: 640K RAM plus 512K o(
simulat< d I.otus/Intel/Microso(t EMS
v3.2 expanded me>nory. Installs on
(I/Z-150/160 me<nory card. No solder
ing. Requires lorty-(ive 256K RAM
chips (not included). I.IM150 $39.95
Mega RAM-150: Get 640K/701K main
memory plus 512K RAM disk on
H/Z-150/160 memory card. No solder
ing. Without RAM chips $39.95
COM3: Change existing COM2 port
address. Internal MODEM at COM2.
Don't lose serial port. COM3 $29.95

Maximize Your Z-100
ZMF100A: Put 256K RAM chips on
"old" motherboar<l <p/n la>49l7orless).

Expand to 7(igK. No soldering.
Without RAM chips. $65.00
ZRAM-205: Put 25tiK RAM chips on
Z-205 hoard. (iet 256K memory plus
76RK RAM disk. Contact us for data
sheet before ordering. Without RAM
chips. $49.00

Z-1 71 Memory Expansion
MegaRAM-171: Vut 256K RAM chips
on memory <ard. (iet 640K memory
plus 384K RAM disk. $59.95
H/'Z-89 Corner
H89P(P< Two port parallel printer
interlace card. Witl> software.
H89VIV$50.00; Cab(< $24.00
SPOOLD(SK 89 and SLOT 4: Cards still
available. Contact us (or information.
Order by mail, phone or see a Heath/Zenith Dealer.
UPS/APO/FPO shipping included. VISA or MC.
WA iesidents add 8 1M terr Hours MF 9.5 PS>.
We return atl calls tert on answenng machiner

8 8 88 74 0 1

F2 CA 82 08

MOV AH. 8
PUSH SI
CALL 8840 8851
POP SI
INC SI
LOOP 111

1 1D: RETF 2

MOV SI, I BP+4i

8 9 E5 BB 76 84 BA QC 80 F9 80 7 4 1 3 B 5

B A 84 B4 88 56 9 A 5 1 8 8 4 0 0 8 5 E 4 6 E2

version of the MTR-100 ROM was re
leased with different entry points. But
since the Z-100 is obsolete machinery, I
doubt i f Zenith wil l be p roviding any
more MTR-100 versions, so that is no
longer a factor — all of the MTR-100 ver
sions I know of have the MTR SCRT en
try at FE01:0019.

ing whether to use the BIOS interface or
the MTR-100 ROM routine, is that the
BIOS causes a user interrupt to be gener
ated whenever a character is output to
the screen. Memory resident utilities that
depend on this interrupt to gain control
will not work correctly if you bypass the
BIOS by going straight to the MTR-100.

Using BIOS Output with BASIC

ally find useful in your BASIC programs.
Enter the following program using DE
BUG's mini assembler.

. .

1 08: MOV B P . S P

MOV CL, ISI I
CMP CL. 0
JZ 11F
MOV CH, 0
M OV SI, i S I + 1]

111: MOV AL , [S I I

Here's an example of how to use this
assembly routine in a BASIC progran>...

Now if you unassemble this program
with DEBUG, you will get the following
hex bytes.. .

48 DIM PROGg(17)
58 TEXTS="Hell o t h e r e ! " +CHRS)18)+CHRS(13
90 FOR I= i T O 1 7 : READ PROC/,(I l :NEXT
95 DATA &HE589,&H768B.lkHBA84.&HBQQC
96 DATA &H80F9,&H1374.!kH8085,&H748B
97 DATA &HBA81, &HB484. !kH5688. &H519A
98 DATA lkH4888,&HSEQQ,&HE246,&HCAF2,&HQQQ
180 DEF SEG
118 BIOS=VARPTR(PROGg(0))
115 FOR I= l T O 1 8 00
120 CALL BIOS(TEXTS>
125 NEXT

Another consideration when decid

Here is a routine that you might actu

p oint t o n e x t c h a r a c t e r
loop until done

return t o B ASIC

get. stack frame
find start of string descriptor

get length of text string
if null string,

ret.urn immediately
CX is now charac te r c o un t
SI points to start of string

get a character
code for CHR WRITE function
seve st.ring pointer
call BIOS CONFUNC

code. They should also recognize special
escape sequences that may be used to
clear the screen, position the cursor, etc.

If you are using a high-level language,
the character output routine you use may
filter out some of these special characters.
Therefore, you may need to experiment
with thc results (or consult the manual) to
determine exactly how a particular high
level routine affects the character stream.
For example, some routines may auto
matically insert a carriage return character
whenever a line feed is sent to the screen.
And some routines may filter out escape
characters, making it impossible to send
Z-100 escape sequences to the console.

To Be Continued.. .

vival Kit, I' ll wrap up our discussion about
displaying text on the screen, by describ
ing how to write directly to video men>o

ry. I' ll be including code samples tor a
character output routine, and we' ll also
talk about how to use large or fancy text
in your programs.

In the next installment of Z-100 Sur

FBE Research Co., Inc.

You' ll notice that this assembly rou
tine lets you print any BASIC string using
the Z-100 BIOS interface. This will be
about twice as fast as using the BASIC
PRINT statement. The program sample
above will print "Hello there!" on the
screen 100 times.

Handling Special Characters
All of the methods of displaying text

that we have discussed up to this point
will handle non-printable ASCII characters
in a special way. For instance, they will all
recognize a carriage return or line feed

GAME
SOFTWAREP.O. Box 68234, Seattle, WA 98168

206-248-9815
.Reader Servi< e)(104

April 1989

IDaul Il =. Inkerman
3~6Pi(D A.mazon IDrlve

New IDort %2lchew IFIL 346fi f i

Writing Text Directly to the
Z-100 Video Memory

was all about different ways to write text
on the screen of the Z-100. We discussed
how to display text with high-level rou
tines, DOS function calls, BIOS calls, and
MTR-100 monitor ROM calls. The last way
of doing it is to write the text directly to
video memory, and that is the subject of
this installment of Survival Kit.

Understanding the Z-100
Video Memory Map

text to video memory, it might be wise to
take a quick look at the Z-100 video
memory layout. The Z-100 is an all-graph
ics machine (i.e., there is no text mode)
which has three seperate planes of video
memory — one for each primary color
(red, green, blue). Each plane is allocated
a 64K chunk of the system RAM memory
map, as follows. . .

8 8 8 8 8 8 8 8 88H
8 8 8 1 1 1 8 8 1CH
8 8 1 8 8 8 1 8 22H
8 8 1 8 8 8 1 8 22H
8 8 1 1 1 1 1 8 3EH
8 8 1 8 8 8 1 8 22H
8 8 1 8 8 8 1 8 22H
8 8 1 8 8 8 1 8 22H
8 8 8 8 8 8 8 8 88H

C8888 to CFFFF Blue video RAM bank
D8888 to DFFFF Red v i d eo RAM bank
E8888 to EFFFF Green video RAM bank

The numbers given above are five
digit hexadecimal values representing the
offset into the system memory map. The
memory starting at COOOO (blue bank) is
commonly described as segment COOO,
based on the way this memory must be
accessed using the 8088 CPU segment
registers.

Each text character position on the
screen is composed of 9 bytes of view
able data, which are the nine bytes of the
font design. For instance, here is a repre
sentation of the capital 'A' font character...

The last issue of Z-100 Survival Kit

Before we start talking about writing

The Z-100 screen is organized into 25
text lines each containing 9 scan rows.
The beginning of each scan row is offset
128 (80H) bytes from the start of the pre
vious scan row. Since there are only 80
displayable columns on the screen, this
scheme leaves an invisible area of 48
bytes at the end of each scan row.

2048 (800H) bytes from the start of the
previous one. This is enough memory for
16 scan lines (16 X 128 = 2048), but since
only nine scan lines are used for each text
line, this leaves 1152 (480H) bytes unused
at the end of each text line.

layout leaves all these unused 'holes' in
the memory map. But this was done to fa
cilitate address calculations. For instance,
if the scan rows were contiguous, the cal
culation to find the start of a scan row
would involve multiplying by 80. But
since each scan row is actually offset by
128, the calculation can be done by bit
shifting, which is much faster. The same
type of argument also applies for the start
of each text line — shifts are faster than
multiplying by nine.

Calculating the Video Offset for
A Text Character

to calculate the video RAM base offset for
a particular text character.. .

((Line — 1) x 2848) + (Column— 1)
This formula assumes that the top

line is line one, and the left-most column
is column one. The first byte of the font
character goes at this base address, and
each successive byte (nine in all) is offset
128 from the last. For example, if you
wanted to put the letter 'A' (see font ex
ample above) at the 21st column position
o f the 8th text line. . .
base address = ((8 — 1) x 2 8 48) +

The start of each text line is offset

It may seem strange that the video

Here is a formula which can be used

88H
1CH
22H
22H
3EH -->
22H
22H
22H
88H -->

Colored Text

ven't been talking about which segment
(video RAM bank) to use. This is because
the address calculations are the same, re
gardless of which color bank you write to.
Typically, all three banks would be written
whenever you are putting text on the
screen. Different color text is generated
by writing the font pattern or clearing the
character position of each bank. For in
stance, if you want white text, you would
write the font pattern to every bank. Or if
you wanted green text, you would write
the font pattern to the green bank (EOOO)
and clear the o ther two b anks. The
Z-100's video RAM port allows an easier
way to write more than one bank of mern
ory at a time, but our space here doesn' t
allow a complete discussion of that fea
ture right now. We' ll cover how to pro
gram the Video RAM port in another
installment of the Z-100 Survival Kit.

Assembly Language Character
Output Routine

preliminaries out of the way, let's get on
with the show. Listing 1 is an assembly
language routine that can be called to dis
play a text character on the screen.

the routine on the stack, a method which
is used by quite a few high language com
pilers. This routine was written specifically
to interface with Microsoft 'C', but i t
should be useful with other compilers,
and from other languages, as well. The
character position on the screen, and the

offset 14356
14484
14612
14748
14868
14996
15124
15252
15388

You might have noticed that we ha

The character to display is passed to

N ow that we have some o f t h e

(3814H)
(3894H)
(3914H)
(3994H)
(3A14H)
(3A94H)
(3B14H)
(3894H)
(3C14H)

(21 — 1) = (7 x 2 8 48) + 2 8 = 14356

Therefore, the nine bytes of the font
c haracter would be placed at. . .

31May 1989

bles.

program.. .

video.

If you elect

f ore co lo r db 7
back colo r db
text line dw 8
text column dw

mov ax, 8
I IIov ds .

I IIOV S 1 ,

IBOV ds

m ov sl ,
mov bx,
mov ds,

code to call PRTC.. .

86FH

ax
BFEH

mov f or e co l or . 7
mov back co l o r , 8
mov t ext l i n e . 18
mov text column, 1
mov al , 'A'

push ax
cal l p r t c
add sp , 2

The Font Table
There is one thing you' ll need to note

before trying the pr t c routine in your
own program. The start of the font table
(represented by the variable FONT in our
listing) is not defined. You will need to de
fine your own font table of 95 printable
ASCII characters (nine bytes per font char
acter). The start of this table in your data
segment should be indicated with the la
bel "FONT".

An alternative to creating your own
font table is to use the MTR-100 table that
already exists in memory. The segment:
offset address of this table is at offset
06FH in the M T R-100 data segment.
Here's how you find it .

. .

text colors, are passed using public varia

Here is an example of how to use the
prtc routine from an assembly language

in your data segment. . .

The pr t c routine described here

lsi l get MTR-188 data segment (stored at 8;BFEHI

lsi+2] get segment:offset of table
Isi l DS:BX is now table start address
to use the MTR-100 font

t able, you' ll need to modify the prt c
routine so that Sl is initialized to point to
the table, and you' ll need to set DS to the
table segment.

Wrap-Up

isn't quite as fast as simply calling the
MTR-100 monitor ROM routine. The reas
on is because we haven't used any tricks
to do multiple bank accessing, and we
have kept the code as short and under
standable as possible. More experienced
programmers who are still interested may
want to study the listing of the DFC (Dis
play Font Character) routine in the MTR
100 ROM listings (available as a part of the
Z-100 technical manual set). This routine
demonstrates how to use the multiple ac
cess capability of the video RAM port to
crank the last bit of speed from the Z-100

The question might arise. .
.

"If the
MTR-100 routines are faster (or just as
fast) as my own routine, why bother?".
The answer lies in the flexibility of having
your own code to write characters to the

get interrupt page segment

Fan Mail
In the first installment of Survival Kit, I

asked you to write and tell me about your
interests. And I asked for your help in de
termining a direction for th is column.
Well, the mail has started to flow from
that first column in January 1989. The re
sponse has been very enthusiastic (and
very voluminous). Right at this moment,
I'm not too sure how I'm going to keep up
with it all. But rest assured that I am for
mulating a plan, even at this very instant.
Part of the plan is that I hope this mail
subsides to reasonable levels soon!

been getting is simply expressing the writ
er's gratification at having a Z-100 specific
column to read. I appreciate this kind of
mail, but you really should be sending it
to Jim Buszkiewicz. If you think this col

one pixel at a time. In other words, your
program will have to scan the font charac
ter matrix from left to write, top to bot
tom, and set the pixels one at a time. This
will be slow, but can reasonably be done
in assembly language.

screen. The routine given in Listing 1 is
just a starting point for other variations
you might want to develop for displaying
odd size fonts, or writing text in non
standard graphics modes. If your program
can live with the standard 25 line by 80
column display, your right — it probably
would make a lot more sense to stick with
DOS functions or BIOS calls for screen
output.

make foreground white
make background b l ack
posi t i o n w i l l be l i ne 1 8, c o l umn 1

will display letter 'A'

push argument onto stack
display the character
a djust s t a c k

Customized Fonts
For the ambitious programmer, the

possibility exists to program the Z-100 to
display any type, or shape, of font. I'm not
talking about simply changing the design
of the standard font here. I mean using
fonts with different sizes or characteristics
than the standard text font. For example,
you might develop a font with a 12 x 16
matrix size (instead of the standard 8 X 9).
Or you might want to display italic charac
ters on the screen. Most graphics prog
rams give you the ability to have these
types of fancy fonts.

Generally speaking, any font that
doesn't fall neatly into byte boundaries
will have to be displayed on the screen

2 or 3!

this fast.

umn is great, don't tel l me (I a lready
know!), tell the editor.

Q&A

pieces per day at present) is composed of
letters asking questions about the Z-100.
Most of them are very technical ques
tions. Some of them I don't know the an
swers to. But I got myself into this thing.

. .

I guess I can make it through.

Kit, I' ll try to get you a personal reply if
you write. I think it's too much to ask peo
ple to wait several months to see the an
swer to a question in the magazine. If
things just get too crazy, you' ll at least get
a note acknowledging that I received your
letter, As for including a SASE with your
letter — I'm not real picky, but that would
be nice. I'd much rather have a self-ad
dressed, stamped fifty dollar bil l (just
kidding — don't send money!).

At any rate, it would appear that the
first directional push my readers are giving
me is for a question and answer section in
this column. I' ll try to be accommodating.
Here goes.. .

Q. Running under Z-DOS, I was able
to patch the BIOS to speed up the step
rate of my floppy drives. Do you know the
patches to do this with MS-DOS versions

A. It's much easier with DOS 2.x or
up. You configure the step rates of all your
floppy drives by using the CONFIGUR
.COM program (option D on the main
menu) supplied with MS-DOS. Keep in
mind that the maximum step rates are
typically 6 mi l liseconds for 5-1/4 inch
drives, and 3 m i l l iseconds for 8 i nch
drives. Individual drives may not be quite

Q. I'm looking for a good memory di
agnostic program. I know I h ave bad
memory, because one of my larger pro
grams consistently causes a Parity/Buss er
ror. But my p resent RAM d iagnostic
doesn't find the problem.

A. The best memory diagnostic I' ve
seen is the one included with the Z-100
disk-based diagnostics, which I assume
are available through Heath/Zenith. I got
my copy of the diagnostics because my
company used to be a Zenith service cen
ter. The disk-based diagnostics contain a
RAM test (for system and video RAM)
which will not only do a thorough check,
but will also tell you which chip is causing
the problem.

megabyte hard disk in my Z-100, but it is
my understanding that only later versions
of MS-DOS (not available on the Z-100)
allow one to b reak the 32 megabyte
barrier. How can this be done?

A. MS-DOS doesn't really care about
the megabyte capacity of a hard disk. The
real limitation is the number of sectors (or

Q. I w o u ld l i ke t o in s tall a 6 0

As stated in installment P1 of Survival

The balance of the mail (about three

About one fourth of the mail I have

32 May 1989

Listing 1
prtc

v oid pr t c (char c) ;

Entry :

Display a character on the screen

c = character to display
fore color, back color should be set to desired colors.
text line, text column should be set to desired position.
no range checking is done on text line and text column.

nothing

pop
pop
shr
sub
cmp
jge
inc
POP
pop
POP
retReturns:

S1

di
bp

endp

S1

ax
ah, 1
dx, 1888H
dx. BCBBBH
PC4
byte ptr text column

prtc

mov
Eov
cmp
Jge

PC1: pop
ret

PC2: cmp
jnc
push
push

push

proc near

bp
bp, sp
al, (bp+4)
a l , 32
PC2
bp

Action: Displays character on screen.

text column is incremented by one. Line feeds and wrap are
not handled .

extrn fore color:byte, back color:byte
extrn text line:word, text column;word

publi c p r t c

a l , 127
PC1
di
S1

bx, t ex t l i ne
bx
b l , b h
b l , b l
bh, 1
bh, 1
bh, 1
d i , b x
di, text column
di
ah, 8
ax, 32
s i , ax
ax, 1
ax, 1
ax, 1
s i , ax
si, off'set FONT
dx, BEBBBH
ah, 4

get character to display
t est f ' or l e ga l ASCI I v a l u e

if not legal, simply return

xor
shl
shl
shl
EOV

add
dec
Eov
sub
Eov
shl
shl
shl
add
add
Eov
mov

Eov
dec
xchg

calculate font offset
by multiplying font index by 9

get text line for character

t his i s t h e s ame as mul t i p l y i n g
BL by 286

AX has now been multiplied by 2848

DI now holds video RAM offset

small.

prie

clusters) that can be accommodated.
Heath/Zenith gave Z-100 owners a way
around this l imitation (not p reviously
available to PC clone owners) by allowing
the hard disk to be PREP'ed using 1024
byte sectors, instead of the standard 512
byte size. To use a hard disk larger than 32
megabytes, simply run the PREP program
using the /K switch. This will tell PREP to
use 1024 byte sectors. One disadvantage
to using 1024 byte sectors is that the mini
mum amount of space consumed by any
file will be increased to 2048 bytes (as
suming a smallest cluster size of two sec
tors). If you have a 40 meg hard disk that
formats out to say 35 megabytes, you
might be better off just using 512 byte
sectors, and living with a 32 meg capacity
disk. Especially if most of your files are

PC8:
PC9:

PC4: pus h
push
push

Eov
PC7: t es t

JZ

Eov
EOV

lodsb
mov
and
not
and

mov
xor
test
jz

ah, a l
ah, bl
al
a l , b h
a l, ah
e s:ldi l , a l
di , BBH
PC9
di

ax
S1

di
es, dx
bx, bx
byte ptr fore color,
PC7
bl , BFFH
b yte pt r bac k c o l o r,
PC8
bh, BFFH
cx, 9

ah;

ah; make color masks

SI is font offset
get video RAM segment

BL is foreground color mask

BH is background colo r mask
will write 9 bytes

get byte from font table

AND with foreground mask
reverse font image
AND with background mask
Or them together
write byte to video RAM

next font byte

EGAD

or
Eov
add
loop

Graphics and Texl Screen Pr int
Package l'or I.hc VGA, EGA, and
CGA displays.
• Print any part of the screen('crop

box' leis you use the cursor keys lo
select any rcclangular area)

• Enlarge for emphasis(1 lo 4 limes
in graphics modes).

• Color graphics and text prinl in
color (on color p r in lers) or i n
black and lwo shades ol' gray (l'or
black-only printers).

• Set program conf igures which
screen colors map lo which prinlcr
colors (or gray and black tones).

Supported prinlcrs: Epson and com
patibles (Black+ 2 grays); Star NX
1000 Rainbow (30+ colors); Xerox
4020 (64+ colors); Datapruducts
8020 (Black, f> colors); NEC
8023/C.ltuh 8510 (Black, 2 grays).
EGAD, $25.00 Postpaid.

Lindley Systems 4257 Berwick Place,
Woodbridge, VA 22192
(703) 590-8890. Call for Free Calalog

POP
Reader Service glib

May 1989 33

IPaul Ii =. I nkerman
36ril3 Amazon IDriveoo

New IDort IPiche+. Ii=ll 3 ~16f i f i

another.

The Technical Information Gap

result of this column is from Z-100 users
who crave in-depth technical information.
I can appreciate that, because I, too, am
interested in knowing everything I can
about the '100. And in recent times, there
doesn't seem to be many places you can
turn to for such information. .. unless
you' re lucky enough to have an active us
ers' group in your neighborhood.

As far as orphan computers go, the
Z-100 is pretty well documented. Zenith
published a decent technical manual for
the machine, and the service literature
and spec sheets describe its operation
with a fair amount of detail. Of course, if
you' re not a Zenith Service Center, you
don't have access to all the service litera
ture, but most of the info you need to
program the machine is in the Z-100
Technical Manual (a two volume set).

Although most of the in formation
about the Z-100 hardware is available,
portions of it can't be easily understood
by the novice. One of my goals in writing
this column is to try to bridge the gap be
tween raw technical information and
practical applications. After all. . . having
the Motorola spec sheet for the MC2661
Enhanced Programmable Communica
tions Interface in front of you is one thing
. . . bu t knowing what to do w ith i t is

I'd enjoy writing technical stuff every
column, but I'm afraid the average person
would quickly become bored with that.
So you techies are going to have to be pa
tient — we' ll bite off a chunk at a time.
You' re in luck this month though, be
cause I'm going to talk about program
ming the Z-100 keyboard chip. If you' re

Quite a bit of the mail coming in as a
just a casual programmer, don't be scared
away. I' ll try to keep it light, and throw in a
few code examples in BASIC.

How the Keyboard Hardware Works
The Z-100 keyboard circuitry is a

model of simplicity, or complexity, de
pending on how you look at it. In addition
to the array of key switches, one might ex
pect to find a bundle of individual gates
or encoder chips to convert the key
switch positions to key codes. But in
stead, the keyboard circuit is composed
mainly of only four chips. The secret to
this low chip count is that the main key
board encoder chip is a full-fledged 8-bit
microprocessor, complete with two I/O
ports, 1000 bytes of ROM, 64 bytes of
RAM, internal clock and timer. The Intel
8741A Universal Interface Microcomputer
used as a keyboard encoder is really a lit
tle computer that runs independently in
side your Z-100. It has its own ROM pro
gram which handles key code assign
ments, autorepeat, and key buffering.
There are several other chips associated
with the keyboard circuit, hut they are
used only to generate the key click, bell,
and reset signals.

note that the program in the 8741A chip is
stored on a UV eraseable EPROM, so you
could actually modify the keyboard en
coder programming if you want — the
programming instruction set is given in
the Intel spec sheet for the 8741A. I can' t
even Imagine why you would want to re
program the keyboard encoder, but given
the possibility, someone will think of a

After seeing that the keyboard en
coder is really a computer in itself, it' s

Fanatical hackers might also want to

easy to explain how the keyboard works.
The 8741A scans the keyboard switch ar
ray by reading its two I/O ports (one pot%
scans the rows, the other scans the col
umns). When a switch closure occurs (or a
~witch opening in up/down mode) the
key switch is identified, and an appropri
ate key code is placed on the data bus.
The RAM in the encoder is used to pro
vide a 17 key first-in, first-out buffer in
case the processor can't service the key
board right away.

Programmable Features of
The Keyboard Encoder

grammed to operate in one of two differ
ent modes. The default (power up) mode
is called the ASCII scan mode. In ASCII
mode, the keyboard matrix is scanned un
til a key is pressed. After the key switch is
read, scanning resumes to see if another
key will be pressed. Two keys, at most,
are read at a time and decoded (thus al
lowing key modifiers such as SHIFT or
CTRL to be used). When one of the keys
are released, scanning resumes again. The
key codes read at the data port during
ASCII scan mode are the ASCII codes you
are familiar with. Special codes are gener
ated for keys that don't have an ASCII
equivalent (like the function keys).

The other mode of keyboard opera
tion is called UP/DOWN (or event driven)
scan mode. In this mode, the encoder
scans continuously, regardless of what, or
how many keys are down. In addition to
generating a keycode when the key is
pressed, a unique keycode is also gener
ated when the key is released. The key
codes read from the data port in UP/
DOWN mode are arbitrary codes, and not

The keyboard encoder can be pro

reason.

51June 1989

the standard ASCII key codes. Each key
has a unique up and down code.

ASCII mode, and UP/DOWN mode, is
one of the nice things about having a
microprocessor for a keyboard encoder.
Instead of requiring a totally different key
board circuit, all that is necessary is for the
internal encoder program to use a differ
ent scanning algorithm.

choices described above, you may also
select how keystrokes will be detected by
your program. The way it is normally done
(by the BIOS) is by using a hardware inter
rupt generated by the keyboard encoder
whenever a key code is available at the
data port. This interrupt is serviced by an
interrupt routine which reads the key
code, and places it in the type-ahead
buffer. Alternatively, you may tell the key
board encoder not to generate interrupts,
in which case you will need to continu
ously poll the keyboard status to see
when a key is struck. More on this later.

Another feature that can be enabled
or disabled by software is the key autore
peat. When enabled (the default), this
feature will cause the key to automatically
begin repeating after it is held down for a
short time. The repeat rate (11 keys per
second) cannot be changed by software,
although the FAST REPEAT key can be
used to jump it to 28 keys per second.
The FAST REPEAT key will cause the key
to repeat even if autorepeat is disabled.

We all know that the Z-100 keyboard
makes a little click sound when the keys
are pressed (and released, in UP/DOWN
mode). This feature can also be turned off
with software. The key click is generated
by the same circuit and oscillator as the
bell sound. Both are 1 kHz tones, but the
short 10 ms duration of the key cl ick
makes it sound like a 'click'.

Lastly, your program can disable the
keyboard encoder completely, so that all
keystrokes will be ignored. After disabling
the keyboard, the only way to get it back
again is to send an 'enable keyboard'
command, or do a master reset (CTRL RE
SET).

For further information about the op
eration of the keyboard encoder, you
might want to refer to the Z-100 Technical
Manual. A fairly detailed description is
given on theory of operation and pro
gramming of the encoder.

Let the Programming Begin!
'Nuff talk. I think we' re ready to do

something with the keyboard encoder.
There are three ports that are used to
communicate with the encoder chip;

The ability to switch between normal

In addition to the two scan mode

188 REPEAT=B : GOTO 148

The data port (at OF4H) is a read-only
port. (What would you expect a keyboard
to do with data you wrote to it, anyway?)
The command port (at OF5H) is used to
tell the keyboard encoder chip what you
want it to do. And the status port (also at
OFSH) is used to see if the keyboard pro
cessor is ready, or if there is a keycode
available on the data bus. Obviously, the
command port is a write-only port, and
the status port is a read-only port. (Other
wise, how could they be at the same ad
dress!)

The most obvious thing we might
want a program to do with the keyboard
encoder is read keystrokes, but let's leave
that for a minute. It's easier to demon
strate how to write commands to the key
board encoder by writing a program that
does some other things. How about a
sample program that enables or disables
the autorepeat feature. (We could also do
a simple program that turns the key click
on or off, but I think that subject has been
run thoroughly into the ground in every
Heath/Zenith publication I h ave ever
read.)

Consider the simple BASIC program
shown in Listing 1. Line 100 assures that
the keyboard encoder starts out in autore
peat mode. Line 130 waits for you to hit a

K EYCOM PROC NEA R

BASIC Program to Experiment with Keyboard Encoder Commands

118 PRINT"Hit 'R' to toggle AutoRepeat feature.
. . "

158 IF I NPUT(I(1)<>"R" THEN 118
148 IF (I NP(&HF5) AND 2)=2 GOTO 148
158 IF REPEAT THEN REPEAT=B : OUT &HF5,2 ELSE REPEAT=1 : OUT 8HF5,1
168 GOTO 118

Listing 2a

keycom(c)
i nt c ;

I
while (i n p (BxF5) & 2)) ;
o utp(BxF5, c) ;

Listing 2b

Listing 1

Assembly Language Routine
(Command Byte is Passed in Register DL)

'C' Language Routine
(Command Byte is Passed as an Argument)

1888 IF (I NP(&HF5) AND 2)=2 GOTO 1888
1818 OUT &HF5.C : RETURN

Routines to Issue a Command to the Keyboard Encoder
BASIC Routine (Command Byte is in Variable C)

key. If the key i s a c a p ital 'R', the
autorepeat mode is toggled on or off, oth
erwise, the prompt message is re-dis
played. Line 140 is a loop that checks to
make sure the keyboard processor is
ready to accept a command. Actually, at
the speed which GW-BASIC executes
commands, there isn't any way the pro
gram could keep up with the keyboard
processor, so this line could be el imi
nated from the listing without any ill ef
fects. But it is included here to demon
strate good programming practice. If you
program in assembly language or a com
piled language, you' re looking for trouble
if you don't poll the keyboard processor
status before issuing commands. Line 150
of our program is where the keyboard
encoder receives its orders.

mand to the k eyboard encoder, you
should do two things;
1. Check bit 1 of the status register to

make sure the keyboard processor is
ready to accept a command. If bit 1 is
zero, it's okay to proceed.

2. Write the command to the command
port.
Want a simple subroutine that can be

used to issue any command to the key
board controller! Listing 2 gives versions

Every time you want to send a com

Data Por t
4 decimal
Command Port
5 decimal
S tatus Por t
5 decimal

BF4H

BFSH

24

24

IN AL, BF5H
TEST AL , 2
JNZ KEYC OM
MOV AL , DL
O UT BF5H. A L
RET

KEYCOM ENDP
Listing 2c

52 June 1989

4

of such a routine in BASIC, 'C', and assem
bly language.

about what types of commands are avail
able, other than the ones to turn autore
peat on and off. Table 1 gives a complete
list of the commands that can be sent to
the keyboard encoder.

of these commands using your own varia
tion of the BASIC program presented
above. Try modifying the program to turn
the key click on/off, or enable/disable the
keyboard. May I strongly suggest that you
save your first trial of the keyboard disa
ble/enable program on disk before trying
it, because if you did something wrong
you may have to reboot to regain control.

Experimenting with the Scan Modes
Now that we' re all experts in sending

commands to the keyboard encoder, it' s
time to move on to more urgent matters. I
know that turning the key click on and off
is a pretty impressive maneuver, but we
generally expect more from a well round
ed keyboard interface program. In partic
ular, it would be nice if it would tell us
what keys are being pressed.

fers two different methods of scanning
the keyboard, and we' re going to try both
of them. The sample program shown in
Listing 3 serves two purposes; it demon
strates how to use either mode with a BA
SIC program, and it also tells you what key
codes are being generated (for those of
you who don't have access to the key
code tables in the tech manual),

After you select which scan mode
you would like in line 100, the program
writes a command to the keyboard which
disables the hardware interrupts gener
ated by the encoder. If we don't do this,
then nothing will happen in our BASIC
program, because BASIC's keyboard inter
rupt routine will steal all the keystrokes
before we get 'em. Even after disabling
the hardware interrupt, you' ll still notice
that a character comes up missing now
and then (in other words, you hit a key
and no key code number is displayed).
This indicates that BASIC is still lurking in
the background somewhere, watching
over things. Further evidence of this 'big
brother' feature of BASIC is that if you
continue to hit Control-C, you can regain
control (when using ASCII scan mode). As
an interesting aside, when you are in UP/
DOWN mode, you can sometimes cause
the program to break by hitting the 'G'
key, since the down code for 'G' is an
ASCII three, which is the same as Control
C. Of course, once you break out of the
program, you are stuck in UP/DOWN
mode, which is sure to cause unexpected
results, followed quickly by a crash. Moral
of the story... be sure to save the sample
program before trying UP/DOWN mode.

Some explanations are in order. . .

By now you must be getting curious

You can try experimenting with some

As mentioned above, the Z-100 of

COMMAND
Reset
AutoRepeat ON
AutoRepeat OFF
Key Click ON
Key Click OFF
Clear FIFO buffer
Generate Key Click
Generate Bell
Enable Keyboard
Disable Keyboard
Event Driven (UP/DOWN)
ASCII Scan Mode
Enable Interrupts
Disable Interrupts

Keyboard Encoder Command Codes

CODE
(in Hex)

00
01
02
03
04
05
Oe
07
08
09

Mode OA
OB
OC
OD

Back to the program.. . l ine 120 is
where we select the proper command;
OAH for UP/DOWN mode, or OBH for
ASCII scan mode. Line 150 is a loop simi
lar to the one we used to make sure the
keyboard processor was ready to accept a
command. Except this loop is checking to
see if a key code is ready at the data port.
If bit 0 of the status register is set (1), then
a key code is ready, otherwise, keep try
ing. This method of reading the keyboard
chip is referred to as 'polling'.

the key code from the data port, and dis
playing it on the screen. And the code at
line 500 is the little subroutine from List
ing 2 that sends a command to the key
board encoder.

but I wanted to keep it as simple as possi
ble, and still demonstrate how to access
either scan mode. Obviously, if you are
going to write a program that uses UP/
DOWN mode, you would want to make
sure that the keyboard is left in ASCII scan
mode before you exit. Otherwise, DOS
wouldn't have a chance.

You may have noticed that I haven' t
mentioned anything about 'alternate key
pad mode' or 'key expansion'. These spe
cial keyboard functions are implemented
by the Z-100 firmware — not by the key
board encoder. Whenever you read the
keyboard encoder directly (through poll
ing, or an interrupt routine) all you get is
the raw key scan codes.

Table 1

Line 160 is responsible for reading

This sample program is really rough,

100 CLS:INPUT") ASCII Scan Mode 2) UP/DOWN Scan Mode
118 IF M$<>"1" AND M$<>"2" THEN BEEP : GOTO 188
115 CWHD : GOSUB 500
128 IF MII = "1"THEN C=lkHB ELSE C~ A

1aa GOSUB 500
158 IF(IMP(8cHF5I AND 1)=0 THEN 150
168 PRINT INPI&HF4) ; GOTO 158
586 IF'(INp(8HF5) AND 2) =2 THEN 130
518 OUT 8cHF5,C : RETURN

BASIC Program to Experiment with Keyboard Scan Modes

What Use is All This?

gram you write will probably be quite
content to use the normal language key
board interface functions. In BASIC, the
INPUT, INPUTS, and INKEYS commands
will handle just about any situation I can
think of. GW-BASIC even has the ability
to implement event-trapping subroutines
via its ON KEY command.

set of keyboard input functions, as long as
you can be content with using the normal
ASCII scan mode. If you are an assembly
language programmer, MS-DOS function
calls offer a good keyboard interface, but
again, you are limited to the ASCII mode.

As far as I can see, there are only a
few legitimate reasons for going to the
trouble of accessing the keyboard encod
er directly;
1. A memory resident routine may want

to avoid using any DOS function calls.
2. You may want to prevent any other

programs from intercepting your pro
gram's keyboard input.

3, You may have a real-time application
that requires use of the UP/DOWN
mode.

Reason number one is probably not a
valid excuse for going directly to the key
board hardware. Even though DOS is not
re-entrant, you can solve this problem by
calling a BIOS keyboard input routine.
Not only is this much simpler than writing
an entire keyboard input routine yourself,
but it also allows you to take advantage of
the BIOS type-ahead-buffer.

ing your program must maintain control.
Accessing the keyboard hardware directly
will prevent most (but not all) memory
resident utilities from working. If this is
your intention, then have at it. Just keep
in mind that this technique will generally
cause your program to be labeled as 'ill
behaved'. (As opposed to 'well-behaved'
programs, which follow all the rules, and
only use DOS function calls).

cuse for writing your own keyboard input
routine, and is probably the least under
stood of all. What do we mean by a real
time application? Well, the most com
mon type o f r eal-time programs are
games, but any type of program that de
pends on knowing exact key movements

A good question! Almost every pro

Pascal and 'C' also have a fairly nice

Reason number two is valid, provid

Reason number three is the best ex

Listing 3

June 1989 53

might be a candidate for UP/DOWN scan
fTI ode.

An Interrupt Driven UP/DOWN Mode
Keyboard Input Routine

If you are writing a program that
needs to use the UP/DOWN scan mode,
the most versatile way of doing it would
be to use the interrupt driven mode of
operation, and write a simple interrupt
routine that services the keyboard inter
rupts. Why not simply poll the keyboard?
Well, the main reason is that this ties your
program down to polling duties, when it
could be doing something more produc
tive. By using interrupts, the keyboard in
terrupt routine will automatically service
any incoming keystrokes without any at
tention from your application program.
Then when your program is ready for a
key code, it can simply pull one out of the
key buffer.

shown in Listing 4 gives a working, practi
cal example of how an interrupt driven
keyboard routine might be implemented.
This program uses the UP/DOWN mode,
but it can be easily converted to use the
ASCII scan mode by simply changing the
key code equates, and omitting the code
that places the keyboard encoder into the
UP/DOWN mode.

program, you' ll need the Microsoft MASM
assembler, and the LINK object module
linker. Create a source file named UD
TEST.ASM using a text editor, and then is
sue the following commands;

The assembly language program

To assemble this listing into an .EXE

STKSEG

STKSEG

CURSON
UP
DOWN
RIGHT
LEFT
DATSEG

PGMSEG

INT KD
pt
ESC K
UP K
DOWN K
RIGHT K
LEFT K

START: mov
mov
lllOV

mov
int
mov
Ill oV

ends

push

s egment s t a c k
db 18 dup(?)

ends

DATSEG segment
KEYCODE
CLS

db
db
db
db
db
db

db

db db

equ

equ
equ
equ
equ
equ

ax. DATSEG
ds, ax
a l , I N T KD
ah, 35H
21H
c s:BIOS I . b x
cs:BIOS I+2, es
ds
dx, offset KBD INT
ax, PGMSEG
ds. ax
a l . I N T KD
ah, 25H
21H
ds
al , 8F5H
a l , 2
ST1
a l , 8 AH
8F5H, al
TESTIT
a l , 8 F5H
a l , 2
ST2
a l . 8BH
8F5H. al
dx, cs : B IOS I
ds, cs ; B IOS I+2
a l . I N T KD
ah, 25H
21H
ah, 4CH
a l . 8
21H

46H

4FH
3BH
3AH
33H
3FH

' ,8.8, ' + ' .27. 'Dg'

8
27, 'x5 ' ,27, 'E'

'Use arrow keys t o move
27, 'Y' ,43,71 , ' ' ' ,27, 'Dg'
27. 'y5$'

' ,8.27, 'A' ' ,27, 'Dg'
' ,8,27, 'B" ' .27, 'Dg'

" ' .27,'Dg'

Listing 4
UDTEST: This program demonstrates how to use UP/DOWN scan mode in an

a ssembly l anguage program. I t set s u p i t s o w n keyboard i n t e r r up t r o u t i n e ,
switches the keyboard to UP/DOWN mode, and then allows you to move an
asterisk (dot(around on the screen using the arrow keys.

segment
assume cs:PGMSEG, ds:DATSEG, ss:STKSEG, es:nothing

get our data segment

save system keyboard interrupt

MASM UDTEST;
LINK UDTEST,

Here's a brief explanation of how the
program works. The main line program
begins at the START label. This is the entry
point when the program is invoked from
DOS. The program first saves the original
keyboard interrupt vector which points to
the BIOS interrupt routine. We need this
vector so that interrupts not generated by
the keyboard can be passed to the origi
nal routine, and we also need to save the
vector so it can be restored when we end
our program. Next, we install our own
keyboard interrupt routine (KBD INT) in
the interrupt table. The keyboard encoder
is placed into the UP/DOWN mode, and
finally, we call the main program routine
(TESTIT).

(ESC is entered at the keyboard), we need
to clean up before we quit. The keyboard
encoder is put back in its default ASCII
scan mode, and the original BIOS key
board interrupt vector is restored to the
interrupt table. Then we return control to
DOS.

a 'dot' around on the screen by pressing
the arrow keys. This is a very simple rou
tine that essentially does nothing, except
provide us with a demonstration. In fact,

When the TESTIT routine returns

ST1:

ST2:

mov
out
IlloV

mov
mov
mov
int

mov
mov
mov
mov
Illov

int
pop
in
test
jnz

The TESTIT routine allows us to move

mov
mov
int

TEST1: m ov

TESTIT PROC

mov
mov
int

mov
CIIIP

je

mov
out
call
in
test
jnz

near
d x. o f f s e t C LS
ah, 8
21H
al , KEYCODE
d x, o f f s e t U P
al , UP K
TEST2
dx. of'fset DOWN

put keyboard in UP/DOWN mode

call the main program
put keyboard in ASCII scan mode

restore system interrupt vector

return to DOS showing no errors

current key code
anitialrze screen

dot, o r E SC t o e n d . . .

clear screen, turn cursor off
a nd put ' ' ' i n cen t e r

get the current key code command

UP arrow key?

d on t n eed much s t a ck

now, install our interrupt routine

t urn c u r so r b ack o n
move dot up
move dot down
move dot right
move dot left

keyboard/vertical sync interru

ESC key down code
UP arrow key down code
DOWN arrow key down code
RIGHT arrow key down code
LEFT arrow key down code

mov

54 June 1989

TEST2:

TEST3:
TEST4:

BIOS I dw
KEYBUFF db

mov
mov
cmp
je

jmp
CLEANUP:mov

KBD INT:push
in
test
je
in
mov
mov
out
pop
sti
i ret

PGMSEG ends
end

JMPBIOS:pop ax

cmp
je

mov
cmp
jne

mov
cmp
je

mov
int
mov

mov

loop
cmp
je

assume

ax

START

jmp dword ptr cs:BIOS I

mov
int
ret

TESTIT e n dp

K BD INT is ou r k e y board i n t e r r up t r o u t in e

cs:PGMSEG
ax
al , 8FSH
a l , 1
JMPBIOS
a l , 8 F4H
cs:KEYBUFF, al
a l , 2 8 H
8F2H, al

al . DOWN K
TEST2
dx, o f f s e t R I GHT
al , R IGHT K

TEST2
dx, o f f s e t L EFT
al . LEFT K
TEST4
ah, 9
21H
cx, 4888H
TEST3
cs KEYBUFF, 8
TEST1
al , c s : KEYBVFF
cs:KEYBUFF, 8
al , ESC K
CLEANUP
KEYCODE, al
TEST1
dx, offset CURSON
ah, 9
21H

~tais ousacp. M cvwoc...z acmic sv ivmaED cLus 2c s AAm<us viilEE AAcbouAtt 's I

DOWN arrow key?

RIGHT arrow key?

LEFT arrow key?
if none, skip it

t urn cu rsor b ack on

c heck keyboard s t a t u s
if none available, must be
vertical retrace or light pen

get key code
save it in buffer

tel l i nterrupt controller that we
have serviced the interrupt

move the dot
slow things down a bit

wait for another key code from
the keyboard interrupt routine

get the keycode
reset to show no keycode available
is this the ESC key?
y es, prepar e to qu i t
otherwise, store as current code
process the key code

and return from interrupt

do a far jump to the BIOS interrupt
routine so it process interrupt

BIOS interrupt routine address
keycode buffer (small buffer, eh?)

lj'j

since this program doesn't do anything of
philosophical significance, it would have
been a lot easier to simply poll the key
board instead of using an interrupt rou
tine. (In effect, our program is simply poll
ing the one byte key buffer, instead of the
keyboard encoder's data port.) But the
idea here is to demonstrate how to write
an interrupt driven keyboard routine.

The real heart of our program is the
short interrupt routine which begins at the
label KBD INT. This isn't really a part of
our main program, but is a separate little
piece of code that gets called everytime a
key is struck. It is invoked automatically
everytime a keyboard interrupt occurs.
The first thing our interrupt routine needs
to do is check the keyboard status to
make sure a key code is available. You
might ask why this is necessary, if the in
terrupt was caused by a key being struck.
The answer is that the particular interrupt
used by the keyboard is also used by the
video display to signal a vertical retrace,
and by the light pen.

find that a key is not ready, we can safely
assume that the interrupt was not gener
ated by the keyboard, and simply jump to
the original BIOS interrupt routine. If a key
code is ready, our routine reads it, and
stores it in the key code buffer. A normal
program might want to have a buffer that
is slightly larger than one byte, in order to
prevent keystrokes from being lost while
the program is doing other things. This
key code buffer is normally referred to as
a type-ahead-buffer. Of course, if you
want to implement a type-ahead-buffer,
you' ll need to write special routines that
take care of storing and retrieving key
codes from the buffer. That's one nice
thing about using DOS, or the BIOS, for
keyboard input — all this overhead stuff is
taken care of for you.

thing we need to do is tell the interrupt
controller we are done processing the in
terrupt. This is done by sending a 20H to
port OF2H. I don't want to get into a dis
cussion of the 8259A interrupt controller
chip here, so just take my word for it. If
you don't do this, nothing will work. You
might be asking, "how come we didn't do
that before jumping back to the BIOS,
when a key wasn't ready?" The answer .„
the BIOS interrupt routine does it when it
is done. You' ll also notice that when we
process the interrupt ourselves we must
use an IRET instruction to return, but if no
key code was ready, the BIOS interrupt
routine will issue the IRET.
Wrapping It Up

vival Kit", I included a Question fI Answer
section. I plan to include Q&A most of the
time, but there just isn't going to be room
this month. I promise to do better next
t ime. Until then . . . b e sure to keep in
touch!

If we check the keyboard status and

Once the key code is saved, the last

In the last installment of "Z-100 Sur

55June 1989

IPaul If-. Ilierman
AM© Amazon K)riveO o New IPort IPiohev. IFIL A~i-655

characters from the console;
ESC Transmit character at cursor
ESC " Trans mit current line
ESC I Tran smit 25th line
ESC fr Tra nsmit page

split it into two installments of "Z-100 Sur
vival Kit". This issue, we' ll talk about the
character transmit escape sequences, and
all that goes along with that. In "Survival
Kit P7," we' ll find out about the cursor po
sition, and identifying the terminal type.
And I' ll also go into some detail about us
ing re-directed input w ith a p rogram,
since these escape sequences can cause
problems along those lines.

July 1989

Those Odd Escape Sequences

various escape sequences that can be
used to control the Z-100's screen and
cursor. (See Appendix B, "Symbols and
Codes", of the Z-100 User's Manual.) For
instance, 'ESC E' can be sent to the con
sole in order to clear the screen. But what
about those funny escape sequences that
aren't so self-explanatory? The ones that
no one ever explained how to use? Well,
it's about time we learned what they do,
and how to use them.

The escape sequences I'm talking
about all transmit information from the
console, back to the computer. One of
them is used to obtain the cursor posi
tion;
ESC n Cursor position report

Two of them are used to identify the
terminal type;
ESC Z Ident ify as VT52
ESC i 8 Ze n ith identify terminal type

And four of them are used to transmit

All of you are Pretty familiar with the

To do justice to this thing, I' ll have to

Cetting Information from the Console
Usually, when you th ink about a

computer screen, you think of an output
device. You write characters or pixels to
the screen, but you don't expect it to talk
back. Since the display is memory-map
ped, if you want to k now something
about what is on the screen, you simply
read the contents of the video memory.

But before memory mapped displays
became the rage, most computers had to
make do with something called a 'termi
nal'. This was a separate piece of equip
ment which contained the video screen,
and a keyboard. Input from the keyboard
was received via an RS-232 line, and text
output was transmitted to the terminal
over the same line. Most popular termi
nals also had the capability to move the
cursor, and perform other screen control
functions, in addition to displaying text.
These commands were generally pref
aced by an ASCII escape character, to dif
ferentiate them from normal text.

er to tel l what was displayed on the
screen at any given time. Since many pro
grams (like screen dumps, or interactive
programs) needed to know what charac
ters were in certain positions, some termi
nals (like the Heath H-19) had a method
for overcoming this problem. An escape
command was available, which when re
ceived by the terminal, caused the termi
nal to transmit a character (or characters)
back to the computer. To the host com
puter, it was just like the characters were
being typed on the keyboard of the termi

But there was no way for the comput

nal.

Upward Compatibility
When the Z-100 was designed, one

of the major considerations was that it
should be able to run 8 bit CPM software.
(That was before MS-DOS had such a firm
foothold). And most of that 8 bit software
owned by Heath computer users was de
signed to be run on older Heath comput
ers, like the H-8 with an H-19 terminal, or
the H-89. The only way to get around
making major changes to the existing soft
ware base was by allowing the Z-100 to
emulate an H-19 terminal. And that' s
where we get al l o f t hese escape se
quences from. They were all developed
for the H-19 terminal (and therefore, for
the H-89 computer),

little, but I just wanted all you new kids to
know why the Z-100 has some of these
weird escape commands. They' re just
holdovers from the previous Heath com
puters.

How Does This Work?

tures are implemented in the MTR-100
monitor ROM program. It is responsible
for translating any escape sequences sent
to the console, and performing the re
quired function.

formed the instant they are received — in
fact, most just require that one or another
flag byte be changed to indicate a new
condition. But the transmit character func
tions work a little differently.

Whenever you tell the console to
transmit a character, line, or page, it sim

I'm diverging from the main subject a

All of these terminal emulation fea

Most of the escape functions are per

43

ply makes a note of the request, and then
returns control back to your program. The
note that it makes is kept in the MTR-100
data segment, in an area called the 'Trans
mit Structure'. Many of you may have
seen this Transmit Structure in the moni
tor ROM listing (included with the Z-100
Technical Manual set) and wondered
what in the heck it was for. Well. . . pre
pare to be enlightened.

located at offset 2E7H of the ROM's data
segment. (This offset will be different in
older versions of the ROM.) Here's what it
l ooks like. . .
XMT STRUC

the transmit structure. It puts a zero in the
COL variable to indicate that the transmis
sion should start with the first character in
the line. And finally, it sets the COUNT
variable equal to 80, indicating that the
entire 80 column line will be transmitted.
Then, control returns to your program.

If you' re trying to figure out what' s
happening here (by d isassembling the
ROM code) as I have done, you' re now
left with a puzzle — because no charac
ters got transmitted. A few variables were
changed, but how does that accomplish
anything? The answer lies in the fact that
the characters will be transmitted later. All

XMT STRUC ENDS

BURST DB
BCOUNT D W ?
COUNT DW
COL DB ?
ROW DB ?
XMT COLOR DB ?
XMT GRAPHIC DB ?
XMT REVERSE DB ?

Let's assume for a moment, that you
send the escape sequence ESC — (trans
mit current line) to the console. Regard
less of whether the command was sent
using BASIC, assembly language, the DOS
command line, or whatever, control is
eventially routed to the monitor ROM
program. The ROM program makes a note
of which line the cursor is on, and saves
this information in the ROW variable of

The MTR-100 Transmit Structure is

Characters to transmit per VSYNC
Remaining characters in current burst
Characters left to transmit
Horizontal column to transmit
Vertical row to transmit
Current color state transmitted

Current graphic state transmitted
Current reverse video state transmitted

the escape sequence did was cause the
ROM program to set up the Transmit
Structure with instructions about what
should be transmitted.

The Vertical Retrace Interrupt

screen need to be done at a time when
the screen is not being refreshed. Moving
the cursor is one of these operations, but
the most important one is scrolling the
screen. If the screen was scrolled during
the time that the pixels were being writ
ten to the screen, you would get annoying
screen glitches when the CRT-C start ad
dress registers are updated.

One way to avoid trashing the video
is to perform the scrolling and cursor up
dating during the vertical retrace interval.
This is the period when the e lectron
beam is returning to the top of the screen
to begin a new scan. Now to most of us,
the time it takes for the electron beam to
z ip from the bottom to the top of the
screen is just a split second. But in com
puter CPU time (measured in millionths
of a second), there's time here to do all
kinds of stuff.

In order to take advantage of this
'nap' the video takes 60 times a second,
the Z-100 generates a hardware interrupt
whenever a vertical retrace begins. And
the MTR-100 monitor ROM has an inter
rupt service routine that jumps right in
and starts updating the screen whenever
it gets control. The first thing it does is
scroll the screen, if necessary. Then it
checks to see if the cursor needs to be
moved. And finally.. . yes, you guessed it

Some operations that a f fect t he

Next question. When are the charac
ters transmitted, and by what mecha
nism? This takes a little more digging in
the ROM code, but the solution is both
clever and elegant.

... it transmits any characters that need to
be transmitted. But since the vertical re
trace period is somewhat limited, only a
few of the characters are transmitted at a
time — typically 16 characters at a shot.
This transmission of a small group of char
acters is called a 'burst'. The exact number
to be transmitted during each retrace in
terval is held in the variable BURST in the
Transmit Structure. The variable BCOUNT
keeps track of how many are left in the
current burst.

Accessing Video Memory
All of this might seem fairly logical, if

not just a little complicated, so far. The
monitor program records the request to
transmit characters, initializes the Trans
mit Structure, then transmits the charac
ters during vertical retrace time in order to
prevent any screen interference. Rightr
Not quite.

That's what I thought at first too, but
there's a catch. All that's required in order
to transmit a character, is to read the vid
eo memory and put the character in the
keyboard buffer. Well, putting the charac
ter in the k eyboard buffer obviously
doesn't interfere with the screen, and nei
ther does reading the video memory.

True, in some PC compatible com
puters (like the original true blue IBM-PC),
indiscriminate reading or writing to the
video memory would cause video inter
ference. But us Z-100 owners are lucky,
because we don't have that problem. The
reason we don't is because the CRT-C
controller has priority over the CPU when
it comes to video RAM access. Basically,
this means that if your program tries to ac
cess video RAM at the same time as the
CRT-C controller (for screen refresh), the
CRT-C controller tells your program to
take a hike until the video refresh is done.
In technical terms, the video circuitry is

So if reading characters from the
screen doesn't cause any video gl itch
problems, why does the ROM wait until
vertical retrace timez Why doesn't it sim
ply transmit them all at once when the es
cape command is received'! Good ques
tion.

Searching for a Motive

character routines work, I don't guess it
matters a whole lot why they do it the
way they do. But whenever I get involved
in figuring out how something works, it
bothers me if I can't see the underlying
logic. The situation I have been describing
here is puzzling, but the answer, once
known, is ridiculously obvious.

Whenever your program asks the
console to transmit some characters, it
must read those characters as they are
transmitted. You do this just as if you are
reading from the keyboard. Here's an ex
ample of how you might read a line from
the console with a BASIC program.. .

In order to make this character trans

As long as we know how the transmit

188 INPUT"Enter line number to read"; L get line number
118 LOCATE L, 1 make this the current line
128 PRINT CHRIS(27) 'transmit current line

138 WHILE IS<>CHR(I(13): I % =INPUT()(1):L s= LI)+IS WEND' read th e t r a nsmi t t e d c h a r s

But if the monitor ROM program sim
ply transmits all the characters at once
when the escape command is received,
how is your program going to gain control
to receive them(In other words, by the
time line 130 receives control, all the
characters would have been transmitted.
And the LINE INPUT statement would be
waiting for nothing.

mission scheme work, the monitor pro
gram needs to send a character, and then
turn control back to your program, so it
can read the character, Then another
character can be sent, and another, until
the transmission is complete. Actually,
more than one character can be sent at a

1838 RETURN

guage.. .
char linebuffl255);

g etl i ne (l i n e)
a nt l i n e ;

1888 LOCATE L. 1
1818 PRINT CHRS(27); " * " ;

1828 WHILE IS<>CHRE(13): I '5=INPUT$(1)

time, since the BIOS maintains a type
ahead-buffer which will hold quite a few
characters.

ROM program uses the vertical retrace pe
riod to send just a few characters at a
time(' It doesn't have anything to do with
video timing. The retrace interrupt just
happens to be a convenient way of trans
mitting the characters, while allowing your
program to keep control so they can be
read.

Receiving the Transmission
Okay, I can see most of you have had

enough of this theoretical stuff. Time to
put this information to use. The BASIC
program example above gives you an idea
of how simple it is to read a line from the
screen, using the 'transmit current line' es
cape sequence.

be called from your program to read a line
from the screen. It is similar to the pro

char "buff ;
p rin t f (" ~ 33Ygc $33"" . l i ne + 32) ;

gram above, but variable L should be set
to the proper line number before calling
the subroutine. The characters from the
line are returned in the string L$.

Is it beginning to be obvious why the

Here is a BASIC subroutine that could

:LS=L$+I(I:WEND

Here is a similar routine in the 'C' lan

sues wait states to the CPU.

b uff = l i neb u f ' f ;
while("buff++ = getch ()) ! = 13) ;

And here it is again, in assembly lan

GETLINE proc

guage.. .
DATA seg ment
HEADER db 255 .8
L INEBUFF db 255 d up (?)
ESCTEXT db 27 , 'Y ' .27. ' * '

,

'g'
DATA ends

mov
add
mov
mov
mov
int
mov
mov
int
ret

GETLINE endp

There's More Here Than Just Characters
If you write a program that uses one

of these routines, and then run the pro
gram, you may be surprised at the con
tents of the transmitted line. There could
be more in the line buffer than just ASCII
text. So it's time we discussed the format
used for the character transmission.

The first thing to realize is that charac
ters on the screen are more than just
ASCII codes. They can also be displayed
in different colors. And they can be nor
mal text or graphics characters, as well as

di. offset ESCTEXT
a l , 3 2
[di+2). a l
d x, d i
ah. 9
21H
dx. o f f s e t HEADER
ah, 18
21H

l ine number i s p a s sed i n
r egis te r A L

needed for DOS function 18

send commands to console

normal or reverse video. When the ROM
program transmits characters from the
screen, it wants to make sure you know
about the attributes of the characters, as
well as the ASCII codes.

It does this by transmitting escape se
quences along with the characters, in ex
actly the same way you use escape se
quences to display characters with special
attributes. The character transmission rou
tine keeps track of the text color, graphics
mode, and reverse video mode. If any
changes occur in the color or modes, the
appropriate escape sequence is transmit
ted to indicate the change. At the start of
the transmission, the color is assumed to
be white text with a black background,
graphics mode is assumed to be off, and
reverse video is assumed to be off.

ter.

return.

Special Problems Using BASIC
If you are using the BASIC program

ming language, be forewarned that BASIC
plays all kinds of games with the escape
sequences which are transmitted. The ex
act rules to the games will depend on
which version of BASIC you are using.

For instance, ZBASIC version 1.x fil
ters out the <ESC> character from the
transmission, but leaves the scape se
quence operands. In other words, if there
is a color change, the <ESC> character
won't make it, but the 'm' and color num
bers do.

<ESC> characters come through, but in
stead of being CHR$(27), they show up as
CHR$(1). Strange!

you want is the straight text (without at
tributes) is to use a LINE INPUT state
ment, instead of reading each character
i ndividually. Like this. . .

by the word "TWO" in white text, fol
lowed by the word "THREE" in white re
verse video. All three words are separated
by a single space. Here are the codes that
w ill be transmitted. . .
<ESC> m 4 8 0 N E <ES C> m 7 8 T W 0

<ESC> p;T;H;R;E,E;<ESC>;q

.. . followed by 67 spaces, and a carriage

The idea here is that if you transmit
ted this exact string of characters back to
the console, the characters would appear
just as they did originally. There are only
five escape sequences that will ever be
transmitted from the console;
ESC m <fore> <back> change the foreground

and background colo r s
ESC p en t er r ev e r s e v i deo mode
ESC q exi t reverse video mode
ESC F ent er H-19 (block) graphics mode
ESC G exi t graphics mode

character) is terminated with a carriage re
turn, This is necessary since there is no
way to tell in advance how many charac
ters may be transmitted. Consider for in
stance, that the 'transmit character at cur
sor' command could result in a ten byte
string of characters, if the character is a
non-white, reverse video graphics charac

/ def ine YES (- 1)
!redefine NO 8
)redefineESC 27

s truc t (

scrnchr (r ow, c o l umn)
int row. column,

c har va l u e ;
c har f o re . b a ck ;
char gmode, rmode;
I chr :

I
char ch . bu f f I 11], "bp;
chr .fo re = ch r . b ac k = '7' ; / assume default values /
chr.gmode = ch r . r mode = N O ;
printf("S,33Ygcgc", row+32, column+32);
print f (" 'P 3 ") ;
bp = b u f f ;
while ((' b p ++ = getc h ()) ! = 13) ;
bp = bu f f ,
while (~bp++ =- ESC) /' t.ranslate escape seq s '/

/ global character info structure
/ ' a s c i i v a lu e
/ " f o r e ground, background colo r s
/" graphic flag, reverse video flag

Let me give you an example. The
screen line we want to transmit consists of
the word "ONE" in green text, followed

«/
«/
»/
*/

Every transmission (even t ransmit

/" position cursor '/
/w transmit char command "/

One way to avoid this situation, if all

If you are using GWBASIC v2.x, the

1888 LOCATE L. 1
1 818 PRINT CHRg(27) ; " " " ;
1 828 LINE INPUT"" ; L g
1838 RETURNswitch(bp++)

c hr . v a l u e = +(--bp)

case 'm': c hr . f o r e = "bp++: c h r . b ack = * bp++; b r e ak ;
case 'p' : chr . rmode = YES; b r eak ;
case 'F' : chr.gmode = YES; b r e a k ;

)

Listing 1
'C' Function to Read Character at Cursor

/+ and get ascii code /

This is actually a much simpler way of
doing it . . . and the LINE INPUT state
ment will strip out everything except the
text characters themselves.

Buffer Considerations
One of the problems you will have to

consider when writing a program that uses
the transmit character escape sequences
(especially transmit page) is how large to
make the buffer which will hold the char
acters. There are 1920 text positions on

July 198946

(

mov
inc
fllOV

cmp
jne

STUFF1: mov
STUFF2: pop

S TUFF e n d p

CODE ends

push
pop
mov
mov
int

PS2: cmp
je

CODE s eg ment

mov

lllOV

mov
mov
mov

mov
lllOV

mov
cmp
je

ret

push

push
push

assume cs:CODE

XMT CMD db 27 . 'ling'
BUFFPTR dw offse t BUFFER
BUFFER db 2888 dup(?I
DONE db 8

GETPAGE proc near

the screen, but in a worst case example,
the transmit page routine could send
back as many as 19,200 characters (ten for
each text character). Of course, that's not
very likely, but where do you draw the
line? Is 2000 bytes enough? 3000 bytes?

My suggestion would be to do one of
two things. If the character attributes are
important to your application, then make
your best guess about how many bytes
will he transmitted for a typical screen. Be
liberal, unless you' re really running tight
on memory. Then, design your character
input routine to check for buffer overflow.
It can then either discard the extra charac
ters, or generate an error message.

is to have your character input routine fil
ter out the escape sequences (like the BA
SIC LINE INPUT statement does). This

July 1989

The other way to handle the problem

ax. 8
ds, ax
bx, 3FEH
ds. [bx]

far
di
di , c s : BUFFPTR
di, offset DONE
STUF'F1
c s:(d i] , a l
dl

cs:BUFFPTR, di
a l , 1 3
STUFF2
cs:DONE, 8FFH
dl

ds
bx, 83H
Ibxl
[bx+2]
[bx[, offset STUFF
l bx+2], cs
cs
ds
dx, offset XMT CMD
ah, 9
21H
DONE, 8
PS2
ds
[bx+2]
[bx]

pop
pop
pop
le t

GETPAGE endp

THIS IS OUR ROUTINE TO HANDLE THE TRANSMITTED CHARACTERS

STUFF' p r oc
push

Listing 2
Assembly Language Routine to Transmit Page

s et DS = CS

end of transmission?

patch i n o u l r o ut t n e

get MTR-188 data segment
save fo r l a t e r

escape sequence to transmit. page
pointer to current character position
buffer for transmitted characters
f lag i n d i c a t , ing t r a n smiss io n i s co mpl e t e

save BIOS routine address

get current buffer position
out of buffer space'(

y ep. bai l o u t

r eady fo r n ex t c h a r a c t e r

output transmit page command

restore system S XMTC address

wait until characters received

way you wil l know exactly how many
characters to expect. Transmit character
will be one byte, transmit line will be 80
bytes, and transmit page will be 1920
bytes. And, of course, each of these will
have the obligatory carriage return on the
end, which can also be filtered off.

Let's Take it a Character at a Time

acter transmit escape sequences is the
one that transmits the character at the
current cursor position. It's not often that
a program would need to know every
character on the screen, hut it's easy to
think of reasons you would want to read a
single character at a specified location.

BASIC already has the SCREEN func
tion (not to be confused with the SCREEN
command) which reads the character at

Probably the most useful of the char

honest now.

the cursor position. So there's no sense in
showing you how to use the ' t ransmit
character at cursor' escape sequence in
BASIC. But the 'C' language has no such
function (none that will work on the Z
100, that is). Listing 1 is a 'C' function that
will read the character at the cursor posi
tion, along with its attributes, The charac
ter value, colors, and modes are returned
in an external data structure.

A Page Full of B E E Ps

the people who have (on their own) been
able to successfully use the 'transmit char
acter at cursor' and 'transmit line' escape
sequences, I expect there would be quite
a few. But I'm willing to wager that almost
no one has been able to get ' transmit
page' to work correctly. Am I right> Be

When I first started playing around
with it (having already mastered the char
acter and l ine routines), I go t some
unexpected results. It seems like all you
would have to do is expand the 'transmit
line' routine to read about 2000 charac
ters, and you'd have it. But such is not the
case. Everytime I t r ied to t ransmit the
page, I would just get a long BEEP, and the
characters read from the console were all
goofed up. The first couple of lines were
okay, but then al l k inds of characters
would come up missing. The rest of the
transmission was useless,

the code for quite a while, trying to find
out what was happening.. . in particular,
what was causing that annoying BEEP.
When I finally found the answer, it was
something I should have suspected all
along. It's amazing how clear things be
come after you figure them out!

The long BEEP you hear whenever
you send the ESC t[r (transmit page) com
mand to the console, is just the BIOS tell
ing you that the type-ahead-buffer can' t
hold any more characters. The bad news
is that the ROM program is transmitting
the characters faster than they can be read
from the type-ahead-buffer. There does
n't seem to be any way to read the char
acters fast enough (not even with assem
bly language), so the slowpoke that' s
causing the problem must be the DOS
keyboard input routine.
Ah... someone is asking "How come this
problem doesn't occur when a l ine is
transmitted?". Well, you can thank the
type-ahead-buffer for that. The buffer (in
a Z-100) is longer than a line. Once all the
characters are in the buffer, then they can
he read at any speed that is convenient.
But, when the ROM program tries to
transmit a full page, the buffer quickly fills
up, because the characters aren't being
read fast enough.

tion to this problem. Actually, I can think
of two ways of handling the situation.

To make a long story short, I hacked

The good news is that there is a solu

If I asked for a show of hands from

47

PSB:

PS5:

PS6:

PS4:

PS3:

PS2:

CODE

XMT CMD
BUFFER
CODE

START: mov

db

int

mov
mov

mov
inc
jmp

mov

mov
cmp
jne

jmp
cmp
je
dec
jmp

IIIOV

mov
lrlov
Ill OV

Ill OV

Ill o V

IIIOV

Ill OV

mov
int
cmp
je
cmp
jne

j IIIP
cmp
one

ends
end

mov
ant
mov
I.nt

pop
loop

push

push
pop
mov
mov
int

mov
lodsb
mov
Ill ov
int
loop

segment
assume cs:CODE
org 188H

CX

PS7

di
PS2

The first way is to simply bypass the
BIOS routine, and have the ROM program
transmit the characters right to your pro
gram's buffer. Each character that is trans
mitted from the screen is passed in regi

stored at offset 83H in the MTR-100 data
segment. This address is stored in four

START

d l . a l
ah. 5
21H
PS8
d l , 1 3
21H

d l , 1 8
21H

cx
cx, 88

27, '$$'

ax. 8
ds. ax
bx. 3FEH
ds, lbx l
bx. 2E7H
b yte pt r l b x l . 8

si , o f f s e t B UFFER
cx. 24

di, of'fset BUFFER

c l . 8
ah, 7
21H
a l , 1 3
PS6
a l . 1 B H
PS3
cl , -1
PS2

cl , -1
PS4
c l , 8
al . 'm'

PS2
c l , 2
PS2
cl . 8
PS5
cl
PS2
[di] , a l

cs
ds
dx. offset XMT CMD
ah, 9
21H

PS.COM — A Print Screen Program which Uses Transmit Page
Listing 3

next l i n e

p rint , i t
next charac t e r

save character
bump pointe r

return t.o MS-DOS

READY TO PRINT
will print 24 lines

88 columns per l i ne
get char aeter

p rin t CRLF at end o f l an e

skip this character ?

yes, decrement skip count

get MTR-188 data segment
offset of BURST variable
(must be MTR-188 V2.x l
set DS = CS

output transmit page command

get a t r a nsmi t t e d c h a rac t e r
end of transmission?
yes. sk i p a h ead
e scape characte r v

yes, flag to look for operand

look fo r e s cape operand?

yes, if an m , skip next two chars

READY TO READ TRANSMITTED CHARACTERS

bytes (two words); the first word is the off
set, and the second word is the segment.
Listing 2 shows how this might be done in
assembly language.. .

Of course, this routine is designed to
be included in a program. It is simply a
subroutine that allows you to read the
screen. One important thing to note is

escape sequence to transmit page
buffer area is rn memory above program

that the STUFF routine (our substitute for
the BIOS routine) must be declared as a
FAR procedure. This enables the assem
bler to generate the correct far return in
struction needed to get back to the call
ing routine in the ROM program.

through that, I' ll tell you about the other
method of making 'transmit page' work
correctly. This way is actually much sim
pler, and is probably the way the design
ers expected the situation to be handled.
We' ll just slow down the transmission rate
of the characters so our normal keyboard
input routine can keep up. That sounds
pretty logical, doesn't it?

ginning of the column, when I was boring
you to death with all the details of how
the character transmission scheme work
ed? All that stuff about Transmit Struc
tures, and Bursts, and such? Well here's a
case where it helps to know the method
behind the madness. How about if we
told the ROM program to transmit less
than 16 characters per burst? (Remember,
a burst of 16 characters are transmitted
during each vertical retrace period.) If we
set the BURST variable for, say a 2 charac
ter burst, then only two characters would
be transmitted during each vertical re
trace. This works out to 120 characters
t ransmitted per second, instead of the
normal rate of 960 characters per second.
And guess what! It works beautifully!

Listing 3 is a complete assembly lan
guage program which will dump the en
tire screen to your printer (PRN device). It
uses the slow-down technique discussed
above. You' ll note that we are using a
BURST value of eight. You may have to
experiment with different values in your
own programs to see how fast you can al
low the characters to be transmitted. Us
ing interpreted BASIC, for instance, you' ll
be lucky to use a BURST of 3, and get
away with it. Notice also, in Listing 3, that
the program filters out all the escape se
quences from the t ransmission, since
most printers would choke on them.

This program may not be much good
for anything, since we normally think of a
print screen program as being memory
resident. (Although at 110 bytes, I believe
it's probably the shortest print screen pro
gram around.) But the listing shows how
you can use the transmit page feature in
your own program.

Until Next Time
Well I' ve done used up all my space

again! Remember, next installment we' ll
be discussing some more of those mysti
fying escape sequences. And I' ll also be
touching on the subject of using redi
rected input to automatically execute a
program from a script file. And hopefully,
there will still be a little room for a small Q
8 A section. 'Till then. .. keep in touch!

Remember way back toward the be

Now that I ' ve made yo u s u f fer

ster AL to a BIOS routine whose address is

48 July 1989

0 Qo IPaul It. Inkerman
3t620 Am a z on IDrive

Hew IPort IPichew. ILAIL 3t~i-SKifi

ESC Y <row> <column>

Cursor Position, Terminal Identification,
and Re-Directed Input

gan an in-depth discussion of those odd
Z-100 escape sequences which cause
characters to be t ransmitted from the
console. This column, we' re going to look
at several more o f t hese escape se
quences. One that tells you the current
cursor position, and two that are used to
determine the Z-100 system configura
tion. I' ll also talk a little about re-directed
input, and how these odd escape se
quences can affect that capability.

Maneuvering the Cursor
There are lots of ways to manipulate

the cursor on the screen. The most obvi
ous of these is by sending text characters,
tabs, line feeds, or carriage returns to the
console. All of these commands cause
the cursor to move to a new location, and
are understood by even the dumbest of
terminals.

Smarter terminals will allow you to
tell the cursor to go directly to a specified
line and column position. On the Z-100
this is done with the escape sequence:

... where 'ESC' is the ASCII escape com
mand (decimal 27) and < row> < c o l
umn> denote single ASCII characters
which indicate the destination row and
column.

sidered to be non-printing characters, the
row and column characters in the escape
sequence are offset by 32. In other words,
if you want to move the cursor to the first
column of the first row, you would issue
the following command:

September 1989

Since ASCII codes below 32 are con

In the last issue of "Survival Kit", I be

screen.

ESC Y <space> <space>

character (decimal 32). The ASCII byte
equivalent of the escape sequence above
would be like this:
27 89 32 32

The proper ASCII characters for the
row and column can be found by adding
32 to the desired row or column number.
This assumes that the first column of the
first row is row zero, column zero. As
another example, suppose you want to
move the cursor to row 8, column 56,
Adding & to 32 gives 40, which is the
ASCII code for a left parenthesis. Adding
56 to 32 gives 88, which is the ASCII code
for an uppercase X. Therefore, you would
use the escape sequence:
ESC Y I X or . . . 27 89 4 2 8 8

Finding the Cursor
There are several ways for a program

to determine where the cursor is located
at any particular time. Perhaps the most
straightforward of these is for the program
to simply keep track of the cursor posi
tion. After all, the program is in control of
the cursor position, so it should be able to
keep track of where it is at, The program
would need to have two variables, one for
the row position, and the other for the
column position. And it would need to
update these variables whenever the cur
sor was moved, or text was output to the

This sounds simple enough, until you
begin to think about what is involved in
keeping track of the cursor position. For
instance, the program would have to
check each string of ASCII text sent to the
console to see if there are any special

<space> indicates an ASCII space

ESC n

characters, like backspaces, tabs, carriage
returns, or line feeds. The program would
also have to check output to the console
to determine if there were any escape se
quences which move the cursor. This
would be a major challenge, since there
are many escape commands which affect
the cursor position.

As long as a program is constrained in
its use of special characters, it is feasible
to determine the cursor's position by up
dating variables. But if your program will
require a lot of flexibility in cursor posi
tioning (such as would be the case with a
word processing or spreadsheet program,
or a game) there is just too much over
head involved with keeping track of the
cursor. A better way is needed, and the Z
100 provides one. The following escape
sequence can be sent to the console to
inquire about the cursor position:

This escape sequence is referred to
as a "cursor position report". This is one
of those odd escape sequences which
transmits characters from the console.
You may have wondered why I got side
tracked talking about the ESC Y escape
sequence above, since it does not trans
mit any characters from the console. The
reason is because ESC Y and ESC n per
form opposite functions, and work quite
similarly.

Whenever you send the escape se
quence ESC n to the console, the console
responds by transmitting four ASCII char
acters. The format of these characters is
exactly the same as the ESC Y command.
For example, if the cursor was sitting at
row 8, column 56 on the screen when you
requested a "cursor position report" with

39

ESC Y (X

ESC n, the console would respond by
transmitting these four characters:

Look familiar? These are exactly the
same characters you would have transmit
ted if you had wanted to move the cursor
to that position.

find the cursor coordinates:
1 88 PRINT CHR$(27); " n " ;
118 I$ =INPUT$(4I
1 28 ROW=ASC(MID$(I$, 3 . 1) l - 3 1
138 COLUMN=ASCIMID$(I$. 4 . 1 i) -3 1
148 RETURN

Here is a BASIC subroutine that will

HORZ CHAR (column)
VERT LINE (r ow)

828FH
8298H

The address of the MTR-100 data
segment can hp found in the interrupt
page, at addres~ 0000:03FE. For assembly
language programs, it may be easier to
find the cursor position by directly read
ing thp MTR-100 data, instead of the oth
er methods we have discussed.

One last consideration.. . if your pro
gram directly modifies the CRT-Controller
chip cursor registers (R14, R15), the MTR
100 monitor ROM progran1 will become
confused, and will not report the correct
cursor coordinates. If you are going to use
the "cursor position report" escape se
quence, or read the MTR-100 data seg
nlent directly, you must use the standard
console commands and e scape se
quences to move the cursor,

Identifying the Terminal Type
Two of the ocld escape sequences

we have mentioned can be used to deter
n1ine the terminal type with software.
They are:
ESC Z Ident i f y a s V T52
ESC i 8 Zen t t h i den t i f y t e rm i na l t yp

Now I hate to sound ignorant, but I
don't know v hat the heck a VT52 termi
nal is, let alone what it would hp used
with, As far as I know, such a thing does
not exist today, and if there is a standard
terminal protocol built around the VT52,
it must not be terribly popular.

The most important thing we need to
know about the VT52 is that whenever it
receives the escape secluence ESC Z, it
tl'ansnl Its back Ihe sPqt)encP.:

That's it. Nothing more to i t . Pre
sumeably, this escape sequencp would
bp used by a communications program to
determine if it is talking with a VT52 type
of terminal. By returning the characters
ESC / K, the Z-100 is merely saying "yes, I
understand".

Se a Little More Specific
The ESC i 0 "Zenith identify tern1inal"

escape sequence is a lot more interesting
than the VT52 one. This is because the
console not only responds to the inquiry,
but it does so with meaningful informa
tion about t h e vi de o c o n f iguration.
Whenever you send the sequence ESC i
0, the console respond» by transmitting
the following characters:

w here. . .

the number of planes of video RAM. It
will either be '1' or '3'.

eo RAM chip size. It will be 'A' for 32K
chips, or 'B' for 64K chips.

Offsets i nt o

zeI'o.

g etpos(r , c l
i n t r , 'c ;

tion of the cursor.

p rin t f (" $ 33n") ;
getch() ;
getch() ;
' r = g e t c h () - 32 ;
' c = g e t c h () — 32 ;

In order to use this function, you
should declare integer variables for the
row and column, anrl then call the func
tion like this:
tnt row, column;

getpos(g t ow, 8 column I;

Since the 'C' language can only di
rectly return one value from a function,
we are passing the acldress ol the row and
column variables to the function so it may
directly update the values. The alternative
would be t o h ave separate functions
which return the row or the column posi

This demonstrates how to use the
culsol' posit)on repoIT escapP seqUPI'Ice

to determine the cursor location. Note
that we are simply discarding the first two
characters returned by the console (ESC
and Y). The only ones we are interested in
arp the third anti fourth characters, which
tell us the row and column. You' ll also no
tice that we are subtracting 31 from the
ASCII row and column codes, instead of
32. This is because BASIC numbers the
rows and columns starting with row one,
column one, instead of row zero, column

Here is a 'C' language function that
does the same thing:

Going Directly to the Source

to skin a cat. And there are at least three
ways to find the cursor position. We have
discussed two of them; having your pro
gram keep track, and using the "cursor
position report" escape sequence. So you
might ask, "how does the console know
where its cursor is at!". Obviously, it has
to be keeping track of the cursor po>ition,
if it is able to tell you the coordinates.

The MTR-100 monitor ROM progran1
is responsible for processing the cursor es
cape sequences, and the current cursor
coordinates are stored in its data segment
at the following offsets;

It's said there is more than one way

E SC i E < p ov><vr s >

ESC / K or . . . 2 7 47 75

(pov) i s a character that denotes

vl x
MTR-1

DIR > PRN

TEST > ERROR.TXT

8291H
8292H

88 data segment
v 2.x o r g r e a t e r

188 PRINT CHR$(27) ; " i 8 " ;
118 I $ =INPUT$(5)
128 PVR=ASC i MID$ (I $. 4. 1) l -48
138 VRS=(ASC(MID$(I$.5. 1 l)-64) "32
148 PRINT PVR;"planes of video RAM.

Redirected Input
One of the more interesting features

o f MS-DOS version 2 and a bove i s
redirected input/output. Redirected out
put gives you the ability to route the nor
mal screen output of a program to anoth
er device, like a disk file or the printer.
And redirected input allows a program to
take its keyboard input f rom another
source, like a disk file. Since this is a Z-100
specific column, and I/O redirection is a
generic DOS feature, I'm not going to
spend much time describing how to use
these features here. However, there are
some peculiarities of using redirected in
put with the Z-100 that I'd like to men
tion. But first, a short introduction.

Most of you are probably fan1iliar
with using redirected output. You can use
i t to output a d isk d i rectory to your
printer:

or you can use it to map error mpssagps
and other screen output of a program to a
disk file, for later reference. For instance, if
your program was named TEST.EXE, you
could use this command:

But when it comes to redirected in
put, many of you are wondering "what
good is it?" Why would you want to
redirect the input of a program? Well, I
could list quite a few situations where
redirected input is useful, but far and
away the most valuable is the ability to
use a script file to automate the input to a

Okay, it isn't anything worth jumping
t)p and down about, but this is useful in
formation, right? A program can use this
escape sequence to determine whether
the host Z-100 has color capability, or if it
may be used in interlace mode.

this escape sequence to determine if the
host computer is a Z-100, In other words,
they send an ESC i E to the console, and if
anything comes back, the computer must
be a Z-100. I'm a little leary of using this
approach. Oh, I guess it works fine, but
what if your program performed this trick
on some MS-DOS computer that used
ESC i E for some other purpose? The re
sults could get strange.

can be used to determine the Z-100's vid
eo configuration using the "Zenith identi
fy terminal type" escape sequence:

Here is a little BASIC program that

Some programmers also like to use

u sing" ;VRS;"K chips . "

(vrs) is a character that tells the vid

40 September 1989

B <RET>
E <RET>
<RET>
H <RET>
E <RET>

CONPIGUR < SCRIPT.TXT

CONPIGUR < DOTMAT.CNP

CONFIGUR < DAISY.CNP
EDITOR
ECHO Switch to Dot Matrix printer

please

ECHO OFF
ECHO Switch 'to Daisywheel printer

please

program. For example, create a file named
SCRIPT.TXT consisting of the fol lowing
lines ((RET) indicates the RETURN key):

Now execute the command:

This will cause serial port B to be au
tomatically configured for the Diablo 630
printer, using the DOS CONFIGUR pro
gram. The way it works is by running the
CONFIGUR program, and taking the re
quired keyboard input f rom th e f i l e
SCRIPT.TXT. In other words, every time
the CONFIGUR program expects a key to
be typed at the console, it takes one from
the file, instead.

The advantage to doing this, is that
the configuration process can now be
done automatically (say from a batch file)
without any attention from the operator.
If you have a program that requires you to
use a different printer, you could reconfig
ure "on-the-fly" with a batch file. Like this:

In this batch file, the file DAISY.CNF
would contain the configuration com
mands for the daisywheel printer, and
DOTMAT.CNF would contain the com
mand keystrokes for the d o t m a t r ix
printer. EDITOR is the name of the pro
gram you are running that needs to use
the daisywheel printer. Get the picture?

You can use this technique of using
redirected input with many programs. In
order to find out which characters need to
be put in the SCRIPT file, simply run the
program, and keep track of every key
stroke you make. You can do this by sim
ply making a note of each keystroke on a
piece of paper as you are going through a
trial run of the program. Remember to rec
ord EVERY keystroke, even the carriage re
turns and control codes. Remember also,
that you must record the keystrokes re
quired to exit the program, and return to
the DOS prompt. Otherwise, the program
will not return control to DOS when you
run it using redirected input. After you
have a record of all the keystrokes, use an
editor program to create a disk file com
posed of the keystokes you have rec
orded. If all the keystrokes are plain ASCII
printable characters, you can just use a
text editor, like EDLIN. However, if the
program required any control characters
(like Control C), you may need to use an
editor like DEBUG, which allows non
printable characters to be included in the

SETZPC < SCRIPT.TXT

And Now for the Bad News

saying that he would like to see a version
of SETZPC (the program used to configure
ZPC) that would allow all ZPC parameters
to be specified on the command line. As
it is now, SETZPC is an interactive program
which requires the user to answer ques
tions about his desired configuration. This
person wanted to b e a b le t o i nvoke
SETZPC from a batch file, and automati
cally change the ZPC parameters, without
further user intervention. Quite a reasona
ble request, I would say.

that he should ask Pat Swayne, author of
the program. But then the idea struck me
that it should be possible to use redi
rected input with SETZPC, along with an
appropriate script file, to automate the
configuration process. So I began experi
menting with that idea.

cess of selecting each ZPC parameter,
noting each key that was used. Then I
made a file named SCRIPT.TXT containing
all of these keystrokes (ten in all). Next, I
tried running SETZPC with redirected in
put:

The program started executing auto
matically, drawing its keyboard input from
the script file, until i t reached the last
question which required a keyboard re
sponse. Then it hung. Nothing could be
done except to reboot. The only thing I
could figure was wrong, was that my script
file didn't contain enough characters. So I
stepped through the program once again,
and noted my k eystrokes. Everything
seemed to be okay. What's going on
here? Well, it took me a long time to fig
ure this out the first time it happened. To
make a long story short, the problem has
to do w ith those peculiar escape se
quences we have been talking about.

One of the things SETZPC does when
it first starts up is check to see if it is run
ning on a Z-100 computer. (Actually, it is
checking to see i f the computer is in
Z-100 mode or PC mode of ZPC). The
way it does this (yep, you guessed it) is by
using one of t hose " identify terminal
type" escape sequences. The one it uses
is ESC Z (identify as VT52). After SETZPC
sends ESC Z to the console, it then ex
pects to receive a character back from the
console if Z-100 mode is in effect. Techni
cally speaking, the Z-100 would send
back ESC / K, but SETZPC doesn't care
what it receives. Anything at all coming
back from the console is considered to be
fair notice that the host computer is in
Z-100 mode.

redirected input experiment? Our script
file contains 10 characters, which are
presumeably the responses to the ques
tions asked by the SETZPC program. But
when SETZPC attempts to read a charac

A while back, someone wrote to me

My first response to this inquiry was

I stepped through the SETZPC pro

So what effect does this have on our

that come from?

SETZPC > OUTPUT.TXT

with the characters:

ter from the console after sending the ESC
Z command, it reads one from our script
f ile instead, since the input i s be ing
redirected. The result is that our script file
comes up one character short at the end.

The solution? Our script file should
contain the character(s) that SETZPC ex
pects to see when it issues the ESC Z es
cape sequence. In other words, our script
file should include a dummy character at
the very beginning, to fool SETZPC into
thinking the console is transmitting the
character. Then everything will work okay.
Try it and see.
Ignore the Garbage

We have now solved our problem of
using SETZPC with redirected input. But
there is one other small thing you will no
tice, After the SETZPC program is run us
ing this technique, the letter 'K' will be
displayed at the DOS prompt. Where did

Well, when the SETZPC program is
sued the ESC Z command the console
wanted to reply with ESC / K. But since
the program was taking its input from the
script file, the characters transmitted by
the console weren't being received. As
soon as the SETZPC program was done,
input was directed back to the console,
and the transmitted characters popped
out at the DOS prompt. The ESC / didn' t
print because they were considered to be
non-printable characters. But the 'K' was
displayed.
Which Programs Do, and Which Don' t?

Good question. That is, "How do you
know if a program uses one of these odd
escape sequences that will goof up your
redirected input attempts?". The answer
is to use redirected output. (Those of you
who are already lost in this discussion, will
b e raving maniacs by t h e t i m e I ' m
through!).

As an example, try running SETZPC
using redirected output . . . l ike this:

As soon as the first screen comes up,
you can just terminate the program using
Control-C. Now look at the OUTPUT.TXT
file with an editor like DEBUG. One of the
things you' ll find is the infamous ESC Z se
quence, which tells you that the program
expected some characters to be transmit
ted back from the console. Therefore, you
know that you need to include those
characters in your script file in order to use
redirected input with that program.

For another example, you might want
to try running a compiled ZBASIC pro
gram using redirected output. When you
check the output file, you' ll find that the
first thing sent to the console by the com
piled program is ESC i 0. The compiler ap
parently uses this to determine the color
video status of the Z-100. This should tell
you that your script f ile for compiled
ZBASIC programs needs to be prefaced

Continued on Page 48file.

41September 1989

4 pr i l

12X 12 — .'

hend — •
PRICK Y TN

4 Yt X S 1XX

A NORI I NI

SEND '1"

() To d a y only Days:

(•) Meekly
() Non t h l y — f ixe d d ay

Continued from Page 41
ESC i E <pov> <vrs>

(See the description earlier in this col
umn for the meanings of these charac
ters.)

And don't forget.. . this same kind of
problem u>ing redirected input can be
(.aused bv any of the "odd" escape se
quen(es we have talked about. Generally,
the problems associated with programs

IIA XE

I •

Nhen Dur ation
() Kv e s y d a y Hour s .

I Iork d a y s M inut e s :

() Non t h l y — f i x e d ve e kd a y

S tas t da te '. em — 24-89
Knd da t e . ' 1 2- Z S — 89

NPV

F7 ~ F F8 ~ C N ES TO N ~RC L

1
Fill REG

C RJ V X+k ' 8 CLX

E PV R PNT I FV

~e p rec iation — s
SL SOYD DB

D MT F n x C 2

Appointment Schedule L4TEN'ITE.'lN

This s c r i p t wi l l l o g yo u c n t o t. h e Heat h U s e r s ' G r o u p B u l l et i n Board
and capture the curreu . on' ine Bat gain Centre I ~sting, a s wel l a s t h e
cuirent message base T h ese aie all stored in C:JCOMMi,HUGBBS LOG
Inseit debugging code here — the ECHO statement
ECHO
WAITFOR "Enter Your F ' IRST Name"
SEND "FIRSTNAME"
WAITF'OR "Enter Your LAST Name"
SEND "LASTNAME'
WAITF'OR "Enter Your HUG ID Number"
SEND "99BBIT"

Get the Online Bargain Centre List.
l YAITFOR "Funct io n o i < H >e l p "
SEND "OL";
DOWNLOAD ASCII 'C tCOMMi,HUGBBS BC"

Receive the message base using ASCII protocol i n a c o n t i n u ous s t r e a m .
Scanning from message 1 will always start at the lowest-numbeied
message in the message base

WAITFOR "Function or <H>elp"

SEND 'RC";
WAITFOR "Scan F'com Which l lessage"

DOWNLOAD ASCII "C:'<COMM'<HUGBBS LOG"
SEND " M" ,
W AIT'FOR "Ft:act. icn o r <H>elp"
SEND "G",
WAITFOR "Leave Private Message'
SEND "N"

.

HANGUP

e
1
e

Figure 7

Figure 6

Figure 5

1989 I Monday 4 pr i 1 24 , 19 8 9
Nake a p p o i n t v e n t

CANCEL

I CII S

1 E E X

LST

K

I '
•

4 la< v
(•) No al a r v
() Si mp l e a l a r v
() 5 s<1 n a d v a n c e
() l e v i n ad v a n c e

I A t t a c h no t e

B EC E ND

DNY NDY xv

N T E R

UIKZII '
x r y , r nt

e ss i o n

e.ee

next time!

savings account (your mileage may vary
considerably!). Using the manual's exam
ple on "Solving IRA and savings account
problems" as a guide, I found that if I start
saving $218.64 per month, I ' ll reach
$40,000 after 120 months. The only trou
ble is, I have three other daughters; I sus
pect I' ll have to write a lot more articles in
the future!
Using the Utilities

There's one last a p plication provided
with PC Tools Desktop that provides four
useful utilities. Using this last menu sel
ection, you can change the hot-keys as
signed to pop up the Desktop itself or ac
tivate the Clipboard cut and paste faci
lities v hen you' re running other programs.
You can also display a complete ASCII ta
ble, change the menu and window colors
used by the Desktop system (as I men
t ioned earlier), o r u n load PC T o o ls
Desktop from mentory. Addition of these
functions rounds out an impressive col
lection of p rograms and gives you the
control you need t o k eep PC Tools
Desktop from interfering with other pro
grams that share the use of your micro
computer.
Wrapping Up

It's been a long j ourneythrough the
programs that make up the PC Tool» De
luxe Version 8 Desktop Manager. Hope
fully, you will have found the information
you need to make a decision on th is
package, especially in light of the PC Shell
and PC Forntat coverage in the first article
of this series.

But there's a few more programs to
cover before we finish with PC Tools De
luxe Version 5, so you may want to stay
tuned. Next time, I' ll cover the PC Cache
disk caching program, PC Secure (the file
encryption/compression/decryption pro
gram), PC Backup (the quick floppy and
hard disk backup system), and the hard
disk utilities Mirror and Coinpress. If you
have any questions about anything I' ve
presented, please drop me a note and I' ll
try to respond promptly. The Technical
Support folks at Central Point Software are
very helpful, and are also quite willing to
help you work out any problems or bugs
you seem to be encountering. See ynli

I know I' ve been prolnisiltg ailuther
Question and Answer session for several
columns now. And the questions are be
ginning to pile up. Dort't worry — every
body gets a personal reply ASAP. But the
purpose of the Q&A section is to spread
the knowledge around a bit, so the same
questions don't get asked over and over.

Well gliess what? We' re out of space
again in this issue. I guess I just don' t
knov v hen to shut up. But I' ll tell you
what. The next installment of "Z-100 Sur
vival Kit" will be cfevoted entirely to an
swering some of your more interesting
questions. I promise!

'till then, keep in touch!

that. «se ESC Z or ESC i 0 to identify the
terminal type are pretty easy to over
con)e. But if a program uses ES(n (cursor
position report), or any of the transmit
character escape sequences, it usually
won't be practical to use redirected input
with it, sirlce it would be dl'fficult to tell in
advance exactly what input the program
was expecting.
QRA, Where Art Thou?

September 1989

IDaul Ii=. Inkerman
3L S'il) A.mazon IDrive

0 o New IDort IPichev ILAIL 3~I-6fifi

Answer:

dure. . .

Q&A

room for a question and answer section in
the "Survival Kit" column, and I keep
promising that the next issue will. Hope
fully, this installment wil l help get us
caught up. The whole column this month
is devoted to answering some of the more
interesting questions that I have received.

Question:

keypad. Is there any way to make the
Z-100's ENTER key into a plus (+) key?

Yes, the Z-100 ENTER key can be
mapped so that it is a plus (+) key. This is
one of the nicest things about the Z-100;
its versatility. There is a program named
FONT.EXE that comes with version 2.x or
3.x of MS-DOS for the Z-100. You can use
this program to remap the keyboard
codes, as well as for changing the font de
signs.

it were a plus (+) key, follow this proce

A. Invoke the FONT program, by typing
'FONT' at the DOS prompt.

B. Select the Key Map Editor from the
main FONT menu.

C. Switch to page two of the key map by
hitting the F1 function key.

D. Select to change the code generated
by the ENTER key by hitting F2, then
typing 8D, followed by a RETURN.

E. Map the key to the plus (+) key by en
tering 28 as the new code, followed by
a RETURN (2B is the ASCII code for
I+

I
)

F. Exit the Key Map Editor by hitting the
F3 key.

For the last few issues, I haven't had

I miss the 'plus' key on my numeric

To make the ENTER key perform as if

FONT PLUS.FNT

One important consideration

G. Select to write the new font file to disk.
You might use a name like PLUS.FNT.

H. Exit the FONT.EXE program.
Now you have a font called PLUS

.FNT that considers the ENTER key to be
the same as the plus (+) key. In order to
load this font, simply type;

You might want to include this com
mand in your AUTOEXEC.BAT file if you
want the modified key mapping to be in
effect all the time.

some programs can't be used without the
ENTER key. For instance, WatchWord
uses the ENTER key to switch back and
forth from insert to command mode.
When you create your special key map
ped font, you may want to assign the EN
TER key function to another less-used key
combination. A good choice might be to
use the Shifted ENTER key (code CD) as
the ENTER key (in other words, map CD
to BD in the Key Map).

Question:

8 MHz, but I' ve heard that some Z-100s
won't run at the faster speed. Which one
of the speed upgrades should I user
Answer:

sometimes cause problems. The safest
(and most expensive way) to do it is to
use the Heath/Zenith HA-108 kit (see de
tailed description in July 1985 REMark
Magazine). The HA-108 kit includes all
the parts necessary to properly speed up
the Z-100, and convert the motherboard
to 256K memory chips. Alternatively, (and
less costly) several vendors offer speed
up kits which simply include the parts to

I would like to speed up my Z-100 to

Speeding up the Z-100 to 8 MHz can

speed up the system clock. The differ
ence between these bargain priced kits,
and Heath's HA-108 speed-up is that
Heath's kit comes with faster versions of
most speed critical ICs.

C.D.R. Systems Inc. in my Z-100, and have
had no problems at all. But I may have
been lucky. Many users report that they
have to switch the main 8088 processor,
I/O chips, and various other components
in order to get their Z-100's operating at
the faster speed. The manual that accom
panied the C.D.R. speed-up kit was very
thorough, and includes a complete trou
bleshooting section which lists probable
slow chips, in the order they are most like
ly to fail.

Question:

operating system to version 3.1 of MS
DOS, but how will I convert all of my pres
ent floppy disks (formatted with Z-DOS) to
the new systems
Answer:

Any new version of MS-DOS should
be able to read file formats of previous
versions. For example, MS-DOS 2.x or 3.x
can read the old Z-DOS 1.1 format with
out any problems. After upgrading to the
new version, you should format new
floppies, and copy old data and programs
to the new format disks.

Question:
Is there any way to use Zenith's FTM

(flat tension mask) monitor with my Z-100.

Sorry, but the news is bad. I don' t
know of any way to use the FTM monitor
with a Z-100. The problem is that the

I have installed a speed-up kit from

I would like to upgrade my Z-IOO's

Answer:

19October 1989

ZCM-1490 is a fixed frequency monitor,
which uses a 31kHz video frequency. The
output from the Z-100 is 15.75kHz. This
means that the Zenith FTM monitor will
not be able to sync on the Z-100's video
frequency.

make the Flat Tension Mask technology
available in an autosynchronizing type of
monitor (similar to NEC's MultiSync moni
tor). This way it could be used on virtually
any computer, with any graphics card. But
until that time comes, I don't know of any
way to use it on a Z-100 computer.

Question:

speeded up (especially screen I/O) by us
ing a I'aster version of the ROM, which is
copied into RAM memory. Can this be
done on the Z-100?
Answer:

Monitor ROM into an area of RAM may
be possible on the Z-100, but there isn' t
much reason for doing it. I have examined
the MTR-100 monitor ROM source code
in some detail, and quite frankly, I don' t
think it can be speeded up by any signifi
cant degree. The original programmer was
pretty sharp.

The majority of code in the IBM-PC
ROM is actually the BIOS routines. It is the
BIOS interrupt routines which are helped
most by modifying the code for faster op
eration. The BIOS of the Z-100 is not held
in ROM, but is provided on disk, as a soft
ware program. The Programmer's Utility
Pack contains the complete source code
for the Z-100 BIOS, and may be modified,
and re-assembled to your heart's content,
It is quite possible that the Z-100 BIOS
could stand some fine tuning to increase
speed, but beware; this type of t h ing
should only be a t tempted by experi
enced systems programmers.

Question:
I have tried several programs that use

interlace mode on the Z- 100, but the
screen seems to wrap around from the
bottom to the top. In other worcls, some
of the lines that are supposed to be on the
bottom of the screen, appear at the top,
and some ol the text lines are split. I have
64K RAM chips installed on the video
board. What's the problem herez
Answer:

figured the video board to use 64K RAM
chips. Sure, you may have 64K chips in
stalled, but you must also set jumper)307

chips are being used. There are three pos
sible settings for jumper)307; Low 32K,
High 32K, or 64K. These choices deserve
some explanation,

The video logic board in the Z-100
was designed to use 64K chips. However,
to decrease costs, Heath/Zenith allowed

on the video board to indicate that 64K

I' ve heard that PC c lones can be

Writing a modified version of the

It would be n ice i f Zenith would

I t sounds like you have not con

screen.

'bad' 64K chips to be used as 32K chips.
Generally, the faulty 64K chips would only
have a few bad cells in them. So if you
could find a set of 24 chips that had all
good cells on the bottom, or all good cells
on the top, it was okay to use them as 32K
memory. Most o f t he "All-in-One"
Z-100's came with one hank of good 64K
RAM chips installed for monochrome op
eration, But most of the earlier low-profile
models came with ' faulty' 64K chips
jumpered to be used as 32K chips. De
pending on whether the chips were good
on the top or bottom, jumper)307 was
set for either low 32K or high 32K.

Whenever you switch to good 64K
chips in the video, you must also reflect
this change by changing jumper J307. You
may want to refer to the Z-100 Technical
Manual for more information about the
jumper settings. You may also want to
note that you can put jumper)307 in the
64K position, even if you only have the
'faulty' 64K chips provided by the factory.
This will allow you to use programs that
operate in interlace mode, or use two
pages of video memory. However, doing
this with 'faulty' 64K chips will result in a
f ew unwanted dots o f c o lor on t h e

Question:
I have a Z-100 low profile model (ZW

110) which has three planes of 32K video
memory chips. Everyone says I shoulcI re
place the 32K vicleo memory chips with
the larger 64K chips. It won't cost much for
the parts, but I cion't like to take the com
puter apart, except for a goocl reason.
What will I gain by pulting in the 64K
chipsl
Answer:

Using 64K video memory chips pro
vides more than twice as much memory
as is required for the standard Z-100 dis
play. But you must use a program which
knows how to take advantage of the extra
memory in order to get any benefit from
the 64K chips. Most programs don't re
quire this overabundance of memory, so
you won't be able to tell any difference in
their operation.

I can think of three reasons why a
program would require that 64K chips be
installed. First of all, they allow the Z-100
to display a higher resolution image. The
standard Z-100 video provides a resolu
tion of 640 X 225 pixels. Higher resolu
tion modes, such as those available using
interlace or ProScan, may have resolutions
up to 640 X 512 pixels. In order to display
these higher resolutions, more than 32K
of memory is required to store the bit
mapped image.

memory chips is so the program can have
two 'pages' of video memory, This allows
the program to compose a page of text or
graphics out of sight of the viewer. Then
when the page is done, it can be dis

1

2 5 6

played almost instantaneously simply by
changing the CRT controller's start ad
dress register. This page switching scheme
makes slide-show type p resentations
more attractive.

Another reason a p rogram might
want the large video memory chips is for
extended scrolling capabilities when dis
playing text. With 64K RAM chips, the
number of lines that can be scrolled for
ward or backward increases dramatically.
This may be useful for text processing ap
plications.

esting uses for 64K video RAM chips de
pend on the proper software for support.
Most of the programs you use (including
all DOS utilities) probably don't care if
you have 32K or 64K chips installed.

Question:

that all connect to the serial port ol my Z
100. Most of my software that supports
these devices will allow me to use them
on either serial port A (l1) or serial port 8
(/2). Other than the obvious difference in
gender, what is the di fference between
these two portsz

Answer:

ence between the two serial I/O ports on
the Z-100, considering the fact that they
both use identical 2661 interface chips.
Most of the differences can he traced to
simply pinout differences, but some of
the RS-232 lines also have a different logic
design.

One of the ports is supposed to be a
DTE port (that stands for Data Terminal
Equipment), and the other port is to be
used as a DCE port (Data Communication
Equipment). The DCE port (jl) is intended
as a printer port, and the DTE port (J2) is
for a modem. That's the way it's adver
tised to work, but it's not the way it al
ways comes out in real life. For instance, it
seems like most serial printers would rath
er compete for J2 with your modem.

differences between the two ports can be
corrected by something called a modem
adaptor with full handshake. Or you can
build your own adaptor cable with this
wiring:

'r
8. 28

Notice that it doesn't matter which
end is the right end, since the cable is
symetrical. (It looks the same from either
end.) In order to use it as an adaptor,
though, you' ll want a female DB-25 on
one end and a male on the other.

Keep in mind that all of these inter

I have a printer, mouse, and moclem,

Actually, there is quite a lot of differ

Actually, for most RS-232 devices, the

1

3 2 5

7 6

4

8, 28

Another advantage for having 64K

October 198920

Question:
I would like to use my Z-100 and a

graphics eclitor program to compose title
frames for my home video movies (to be
played back on a VCR). I haven't been able
to get very good results trying to take a pic
ture of the screen directly with my video
camera. Do you have any good icleas?

The obvious answer is simply to con
nect your VCR to the composite video
output of the Z-100. The composite vid
eo output of the Z-100 is the same RS-170
video signal that your camera generates.
(Conversely, the color video monitor you
use with the Z-100, makes an excellent
video monitor for your camera/VCR set
up.)

To do this, simply design the screen
that you want with your favorite graphics
editor. Then connect the composite vid
eo output of the computer to the input of
your VCR. Record for a few seconds (how
ever long you want the screen to be dis
played) and then stop the recorder. That' s

The disadvantage to this method is
that the composite video output of the Z
100 is only a'monochrome signal. So your
title frames won't be able to take advan
tage of all the Z-100's colors. If you abso
lutely have to have color, there are de
vices available which will convert a digital
RGB signal to color composite video, but
they are fairly expensive (in the $200 to
$300 range).

Question:

ing a late arrival, have lots of catching up to
do. I want to leam all I can about the
Z-100. Can you give me a fairly complete
list of sources of information about the
Z-100 computer?
Answer:

who has the initiative to try and become
an expert through home study. Here is a
list of reference materials which contain
Z-100 information:
1. Z-100 User's Manual. You should have

received this loose-leaf manual when
you purchased your Z-100. It contains
general user information about the op
erating system, BASIC programming,
and most of the information necessary
for a novice to program the computer.
No price is available, since I don't be
lieve this manual is sold seperately.
Published by Zenith Data Systems.

2. Z-100 Technical Manual. This is a three
volume set which includes detailed
descriptions of the Z-100 hardware
(with schematics), manufacturer's spec
sheets on al l programmable IC de
vices, and a l isting of the MTR-100
monitor ROM program, Every serious
Z-100 programmer must have t h is
manual. $50.00 (but may not be availa
ble any longer). Published by Zenith

it.

Answer:

I just purchased a used Z-100, and be

Okay, I' ll try. I appreciate a person

est to Z-100 owners:

Heath Users' Group
P.O. Box 217
Benton Harbor, Ml 49022
Phone 616-982-3838

Data Systems. Available (maybe)
through the Heath Catalog Order Cen
ter Phone (800) 253-0570
Programmer's Utility Pack. A loose leaf
manual and disk set. Contains descrip
tions of all MS-DOS function calls, and
the Z-100 BIOS functions. Describes
EXE and COM program development,
and how to write DOS device drivers.
Many useful programmer's utility pro
grams are included on disk, as well as
complete source code for the Z-100's
BIOS. A must for every Z-100 program
mer's shelf. $150.00. Published by
Zenith Data Systems. Available (may
be) through the Heath Catalog Order
Center Phone (800) 253-0570
How To Use Zenith/Heath Computers
by Hal Glatzer. Softbound book (144
pages) giving entry level information
for users of Heath/Zenith H-8, H-89,
and Z-100 computers. $19.95.
Copyright 1982 by:

S-A Design Publishing Company
515 W. Lambert, Building E
Brea, CA 92621-3991

Z-100 Software Directory. A humon
gous, but outdated listing of software
that works with the Z-100. I'm sure this
loose leaf book is out of print by now.
You' ll need to find a used copy. Origi
nal cost $30.00.
Z-100 Service Literature. This stuff is
not generally available to the public
only to Zenith Data Systems Service
Centers. Most of the programming in
formation included with this stuff is
available in the Z-100 Technical Manu
al. But the service literature contains in
depth "theory of operation" descrip
tions, as wel l as p arts l ists, t rou
bleshooting information, and field ser
vice bulletins. Since the Z-100 is obso
lete merchandise now, you might try
checking with a local ZDS dealer to see
if they will give you their Z-100 service
literature, instead of throwing it in the
trash. There are several thousand
pages of it, so making photocopies
wouldn't be practical.

In addition to the reference works
listed above, there are a few periodical
type publications which might be of inter

REMark Magazine. Includes this col
umn (Hip, Hip, Hurray!) and other
occasional articles specific to the Z
100. If you' re serious, try to get all the
back issues since July 1982. (That's the
first issue that mentions the Z-100).
$22.95 initial/$19.95 renewal per year,
includes:
• membership in t he H eath Users'
Group.
• Published 12 times per year by:

magazine (not related to Heath/Zen
ith) which generally has one or two
Z-100 specific articles in each issue.
Z-100 articles begin in issue P2 (Sum
mer 1982), (No longer in existence.)
Sextant Publishing Company.

3. Z-100 LifeLine Journal. 16-20 pages de
voted exclusively to the Z-100. Can' t
plug this too much, since my company
publishes it.

$24.00 per year.
Published 6 times per year by:

Paul F, Herman Inc.
3620 Amazon Drive
New Port Richey, FL 34655
(800) 346-2152

4. H-Scoop Newsletter. Zenith corporate
news and product announcements,
along with product reviews and Heath/
Zenith scuttlebutt. A l i t t le l ight on
Z-100 specific information these days.
$24.00 per year.

Published 12 times per year by:
H-Scoop/Quikdata
2618 Penn Circle
Sheboygan, Wl 53081-4250
(414) 452-4172

5. BUSS Newsletter. Zenith c o rporate
news and product announcements.
Consists mostly of contributions by
readers. Occasional, but rare Z-100
specific topics. (No longer in exist
ence.) Sextant Publishing Company.

6. BUSS D irectory. Contains a l i s t o f
Heath/Zenith vendors, local Heath Us
ers' Groups, and the most complete
Heath/Zenith periodical index around
(which includes listings for REMark,
SEXTANT, and BUSS). Last edition was
1987-88. (No longer in existence.) Sex
tant Publishing Company.

Question:

cal compiler. Can you tell me which ones
will run okay on my Z-100 computer?
Answer:

care to purchase will run on the Z-100.
Some of the more recent offerings include
a graphics windowing type of user inter
face which will not run directly on the
Z-100 (like Quick-C or Turbo Pascal). But
even these compiler packages should in
c lude a command l ine version of the
compiler which can be used on a 'generic
MS-DOS' machine.

One thing these compilers will not in
clude, however, is a graphics library that
can be used with the Z-100. And some of
their standard screen control functions
(like clear screen) may also cause prob
lems when used on the Z-100. You can
get around this problem by investing in
one of the Z-100 graphics libraries which
are available, or you may want to write
your own Z-100 function library,

Question:

I would like tn buy either a 'C' or Pas

As far as I know, any compiler you

I have version 2.11 of MS-DOS for the2. SEXTANT Magazine. An independent

October 1989 21

Z-100, and am considering upgrading to
version 3, But Heath/Zenith wants $150
for the new version, which seems a little
steep. Are there any compelling reasons to
upgrade from version 2 to version 3 ol MS
DOS?
Answer:

an immediate yes! After all, the operating
system is the most important piece of
software you own, and it should be kept
up to date. But in recent times, I have had
to reconsider this attitude in a new light,
regarding the Z-100.

difference between MS-DOS version 2.x
and 3.x. Specifically, version 3 of MS-DOS
introduced the following new features:
1. AT style 1.2 Mb floppy drive support.
2. Direct control of print spooler by appli

cation software.
3. Expanded international character and

keyboard support.
4. Extended DOS function error report

ingg.
5. Support for networked applications,

including file and record locking.
6. Support for larger hard disks (greater

than 32 Mb).
But of these new version 3 features,

the Z-100 implementation does not in
clude the 1.2 Mb floppy drive support.
And the Z-100 has always been able to
use larger hard disks, up to 64 Mb. Direct

I used to answer this question with

First of all, there isn't really that much

ment over version 2.

control of the print spooler is nice, but it
requires appropriate application software,
which is not available for the Z-100, to my
knowledge. And besides, this feature
seems to be present in version 2 of DOS,
too — it was just documented when ver
sion 3 was released. Expanded interna
tional support would only be useful for
persons living outside the United States.
And extended DOS error reporting will
only be interesting to programmers, who
will probably choose not to take advan
tage of it, since doing so would make their
programs version 3 dependent.

that are left with any merit are the net
working features. Are you using your
Z-100 as a part of a network, or multi-user
system> Probably not. Okay, I think we
can agree that version 3 o f M S-DOS
doesn't offer much significant improve

Another reason put forth for upgrad
ing the operating system is to insure that
further updates will be available. In other
words, what if version 4 of DOS is re
leased, and you haven't upgraded to ver
sion 3 yeti This argument doesn't hold
water — for two reasons.

about staying current any longer. There
will never be a version 3.3 for the Z-100,
let alone a version 4. So if you are des
tined to be forever out of date, you might

The only new features of version 3

as well stick with version 2.
Secondly, M icrosoft (o r Ze n i th)

doesn't seem to have any upgrade policy
when it comes to DOS. When a new ver
sion is released, you get to buy it all over
again for the list price. Zenith offered a
discount coupon to owners of version 2
of MS-DOS some time ago, but that offer
has reportedly expired. If you didn't up
grade to version 3 before the coupon ex
pired (or if you didn't receive the cou
pon), you' re out of luck. You' ll have to
dish out $150 for version 3.

ing a whole in your pocket, buy MS-DOS
version 3. Otherwise, forget it — it's not
worth it!
IMPORTANT NOTE: The points made
above only apply to the differences be
tween MS-DOS version 2 and version 3,
which are minor. If you are stil l using
Z-DOS (MS-DOS version 1.x), you defi
nitely need to byte the bullet and up
grade to version 2 or greater. The differ
ences between version 1 of MS-DOS, and
version 2 are staggering — it's almost like
a different operating system. Most pro
grams written these days are designed for
version 2 or above, and may not run cor
rectly using version 1.

Keep in touch!

Conclusion? If you have $150 burn

First off, Z-100 owners needn't worry

Qo IPaul Ii = . IHerman
3LSril3 Amazon IDrive

~vew IDort IK2ichev. Ii=ll jl~l-Cfifi

ZPC Revisited — By Popular Demand
In the very first installment of this col

umn I stated that I didn't want to get too
deeply involved in describing ZPC patch
information. But that was before the let
ters began coming in. My mail has been
running about 10 to 1 in favor of contin
ued support for ZPC patch information for
new PC programs.

First of all, Pat Swayne's ZPC Update col
umn has virtually disappeared from the
pages of REMark. For several years, Pat
kept us abreast of the patches required to
run the latest PC software under ZPC.
Occassionally, another ZPC update article
filters down to us, but patch information
for new programs, and new releases of old
programs, are beginning to get away from
us. Many of you are continuing to discov
er how to run your PC programs under
ZPC, but there isn't a public forum for ex
change of that information.

Even though Pat has been too busy
to continue the ZPC Update tradition, he
has silently been at work trying to keep
track of information people send to him.
He has periodically added new patch in
formation to the PATCHER.DAT file on
the ZPC Upgrade Disk (HUG g885-3042
37), and has tried to keep track of bug re
ports and fixes to the ZPC program itself,
that users have sent to him. I too, have re
ceived quite a bit of patch information for
running PC software under ZPC.

with Pat Swayne and offered to carry the
torch for ZPC patch information into the
indefinite future. But now the question is
this; how should all this information be
collected, organized, and distributed to
the Z-100 community~

There are several factors at work here.

By popular demand, I have talked

Must We Choose Sides?
At this point, I can't help but put in

my two cents worth about the subject at
hand. It seems like whenever I mention
running ZPC on the Z-100, I get a lot of
angry letters pro and con, so I might as
well stir things up real good. My associat
ions with Z-100 users lead me to believe
that there are three distinct attitudes that
prevail regarding the use of ZPC.

ry spare moment in the trivial pursuit of
PC compatibility. Every public domain,
shareware, or commercial PC program
they can get their hands on presents a
new challenge, whether the program has
any useful features or not. These people
are only interested in the "conquest".
Once they figure out how to run the pro
gram under ZPC, they will probably lose
all interest. There is some hacker spirit
here. This isn't a quest for practical use of
the Z-100; it is a hobby. We have these
people to thank for much of the ZPC
patch information that has already been
compiled.

Z-100 purists. These are the people who
insist that PC emulation represents a deg
radation of their Z-100. Even though they
admit that ZPC is a dandy program, it is for
others to use, not them. Most of the pur
ists believe that a Z-100 can do anything
b etter t han a n IB M -PC c an . No t
coincidentally, this group consists mostly
of programmers who are able to make the
Z-100 do what they need it to do.

where in between these two extremist
groups. He uses ZPC when he needs to,
but prefers to use native Z-100 software
when available. This is obviously the most

At the other end of the scale are the

First, there are those who spend eve

well-rounded approach.

where near the top of "mainstream", and
occasionally slipping into the "purist"
camp. Actually, my "purist" affiliation is
not so much because I dislike PC emula
tion. It has more to do with the fact that I
have an AT clone sitting next to my Z-100.
So if I want to run PC software I just run it
on the PC. It seems silly to go to the trou
ble of emulating it on the Z-100, under
the circumstances.

have a second computer (perhaps be
cause your spouse would raise an eye
brow). And I certainly wouldn't want to
suggest that you should out-and-out trade
your Z-100 for a lowly PC compatible
clone. That would probably be a mistake,
unless you can afford to go for an 80286
or 80386 machine. So that brings us back
to the subject at hand — ZPC emulation
of your favorite PC software.

ZPC Patch Information
Some Problems

As most of you know, the key to suc
cess in using ZPC, many times depends
on developing patches for the PC soft
ware. Sure, some p rograms wil l r un
straight up under ZPC, but many will not.
The problem of patching software to run
under ZPC is something that is unavoida
ble. Some things just can't be emulated
with software, and therefore, the program
must be changed.

with the ZPC Emulator is an excellent
source of information about how ZPC
works, and about the type of problems
encountered in PC software which need
to be patched. I expect that many of the

I would consider myself to be some

The HUG User's Manual that comes

But I realize that many of you don' t

The mainstream Z-100 user is some

December 1989 39

questions Pat and I receive regarding how
to make patches to programs could be
avoided if everyone would simply read
the manual!

owners have read the instructions, and
have mastered the techniques of applying
patches to programs so they can run un
der ZPC. Information about many of the
patches you have developed have been
sent to HUG, and to me . . . e laborately
described in lengthy letters, or scrawled
on the back of an envelope.

But there are several problems with
the present scheme (or lack thereof) for
submitting patch information. The biggest
problem is trying to make sure that the file
that is being patched is, in fact, the proper
version of the program. Even though the
present PATCHER program reports "Your
Program was successfully patched", i t
really doesn't have any way of knowing
whether the patches were applied cor
rectly.

Sometimes, hints about using the
program under ZPC are not available
along with the patch information. For ex
ample, the program may need to be run in
PC mode 7, as well as be patched. It
would also be nice to have some informa
tion about the logic of the patches which
were developed, to help other users find
patches to future versions.

And lastly, it would be nice to have a
list of the software that didn't require
patches, along with any special instruc
tions for its use. A data file containing
patch information is nice to have, but
software titles not included in the patch
list leave a question in the user's mind.
Does it work okay without patches, or is it
just that patches have not yet been devel
oped?

Let's Cet Organized
What I have in mind is a single all-en

compassing data file which would contain
all the information you might need to
know about patching programs for ZPC.
Something similar to the present PAT
CHER.DAT, but bigger and better (the
new file will be named PATCHIT.DAT).
This file will be accompanied by a new
utility, named PATCHIT.EXE, which will be
used to patch programs, and provide in
formation about their use under ZPC. I am
beginning development on PATCHIT.EXE
now (I'm writing this in August), and will
be compiling all the patch information I
have at present. By the time this column is
printed, everything should be ready to go.

I am depending on your support to
make this project a success for all of us.
Continue to send in information about
patches you have developed, or programs
you have found to work without patching.
The new PATCHIT program has the capa
bility to do patch verification, and give
user information about the patched pro
gram. But in order to provide this type of

Being an ingenious lot, many Z-100

where;

- — — — New Entry F i e l d

- — — — Requirements Field

R [HI(PI(zllcI

— - — -- Program Name Field

N textstring

support to ZPC users, patch developers
(that's you!) will need to provide more
complete information when patches are
submitted.

the format which wil l be used in the
PATCHIT.DAT file, Your program patch
submissions may be provided in this for
mat, or you may simply submit the re
quired information, and I will make up the
file entry.

PATCHIT.DAT File Format
Each program entry in the PATCHIT

,DAT file will have several fields describ
ing the program or file, and giving infor
mation about any patches that may be re

Following is a detailed description of

— — — - Patch F i e l d
& hexaddress s l , s 2 , s 3 , . . . s n > d l , d2 , d 3 , . . . d n

hexaddress a hexadecim

where "textstring" is the name of the program.

If the Requirements Field R contains requirement P, the following fields
must be p resent ;

— — — - Filename Field

F filename

Figure 1
Required PATCHIT.DAT Fields

Note that when it is questionable as to ~bather the ZHS support

Any line beginning with an asterisk e signifies the start of a
new PATCHIT.DAT File entry.

where N,P,Z,C are single letters indicating any requirements for
proper operation of the program . Nore than one letter requirement
may be listed, except when requirement N is shown. The letters
indicate the following requirements;

al address of up to five digits.
This is the file offset where the bytes to
be patched are l o ca ted .

bytes to be patched. PATCHIT uses these
values as an integrity check, and to
determine if the file has already been
patched. These values are optional. If
original byte values are not known, the
entire sl...sn series may be replaced by a
single q uestionmark 7

to be applied at the specified offset.

Each & field line specifies a series of contiguous bytes to be
patched. If more than one area of the file must be patched (which
is likely), multiple & field lines must be used. In other words,
each F field line may be followed by as many & field lines as
are necessary to provide the required patch information.

N = none, program works without patches or ZHS support.
P = program requires software patches.
Z = program requires ZHS circuitry for proper operation.
C p rogram requires PC style COM port for proper operation.

circuitry is required, the Z requirement will be shown until proven
unnecessary. Users who run the programs on a ZHS equipped 2-100 may
not be able to tell if the program would run on an unmodified system,
therefore they should show requirement Z if any doubt exists.

where "filename" is the name of the file to be patched. If more than
one file needs to be patched for this application, each file to be
patched must be declared with sn F field line.

dl,d2,d3,...dn two digit hexadecimal values of the patches

sl,s2,s3,...sn two digit hexadecimal values of the original

quired. Each field will be described on a
separate line of the file (in other words,
the fields are separated by a CRLF). Some
of the fields are required fields, and must
be present in order for PATCHIT.EXE to
patch a program. Other fields are option
al, and may be present to give information
about the program or file, and to help in
sure that patches are applied correctly.

Each field is designated by a single
character in the first column position of a
line, followed by a space. Lines are lim
ited to BO characters in length.

.DAT file entry are shown in Figure 1. No
tice that a valid PATCHIT.DAT file entry
could be composed of only the informa

Required fields for each PATCHIT

40 December 1989

P texts tring

S textstring

I textstring

C textstring

D filedate

- --- — - Vers ion F i e l d
V textstring

— — — -- Comment Field

texts tring

necessary.

- -- - — - Check F i e l d
? hexaddress s l , s 2 , s 3 , . . . s n

P ATCHIT.DAT Fi l e .

t ab charac t e r .

Contributor Field

where "textstring" is the name of the person, c ompany, e t c .
responsible for providing information about this entry in the

Figure 2
Optional Fields for Each Program Entry

where "textstring" provides version or release information about
the program.

Summary Field

where "textstring" is a brief description of the program.

Figure 3

Publisher Field

where "textstring" is the name of the program s author or publisher

Instruction Field

where " texts tring" provides instructions or other i nformation which
should be displayed on the screen after patches have been successfully
applied to the file(s).

where "textstring" may be any comment. PATCHIT ignores comment

fields. They are provided so that patch logic may be documented.
PATCHIT will also ignore any line which is totally blank, or begins
with a white space character (space or tab). Therefore , i f you
prefer, comments in the PATCHIT.DAT File may begin with a s pace o r

File Date Field

where "fileda te" is the date of the file to be patched. This is the

DOS file creation date sho~n by a disk directory listing, The date
should be in the form mm/dd/yy or mm-dd-yy.

where "hexaddress" is a hexadecimal address of up to five digits
which gives an offset into the file. T he ser ies s l . . . s n a r e
contiguous byte values which should match the bytes at the specified
of fact in the source file. PATCHIT uses the values given In the
Check Field to help determine if this is the correct f lie to patch.
Note that the patch field P a lso allows for byte verification.
The check f ield is provided for more thorough checking, where

on that only a few fields are required is so
that the existing data base of ZPC patches
(from HUG's PATCHER.DAT) could be
utilized. When providing new submis
sions, the information should be as com
plete as possible.

Figure 5 shows a couple of examples
of how the PATCHIT.DAT fields can be
used to provide information for a program
entry.

Suggestions for Contributors
When you contribute information

about a program patch (or a program that
does not require patches), provide as
much information as possible. After all,
most of the information requested by the
PATCHIT.DAT fields will be readily availa
ble to you while you are researching the
patches. Of particular importance is the
version of the program, the file date of
any files that need patching, and the origi
nal values of bytes which are patched.
PATCHIT.EXE will use this information to
verify that a correct patch has been ap
plied.

If no original values for patched bytes
are provided, PATCHIT.EXE will simply
display the message "Program has been
patched". But if the PATCHIT.DAT file
contains original values (in the Patch field
'&' or Check field '?'), it may report "Pro
gram has been patched successfully".

You may be as verbose as you like
with your comments. I will edit them, if
necessary, to keep the PATCHIT.DAT file
size reasonable.

than one entry in the PATCHIT.DAT file.
For example, if the program will run with
out patches with the ZHS circuit, but re
quires patches to run on a plain Z-100,
then a separate entry should be made for
each case. One entry would not contain
any patch information, but would inform
the user (use the 'R' field) that the ZHS cir
cuit was required. The other entry would
show that the ZHS circuit was not re
quired, and include the appropriate patch

Some programs may warrant more

Optional Fields for Each File to be Patched

tion available in a present PATCHER.DAT
file (that is, file name and bytes to patch).
And, in fact, most of the entries in our first
PATCHIT.DAT file will have only basic in
formation, since the extended informa
tion will not have been provided. So we' ll
need more information about many exist
ing entries, as well as information about
new programs. Hopefully, many of you
who have provided patch information in
the past will help fill in the missing infor
mation for users who will need it.

The PATCHIT program has the capa
bility of using optional information, if it is
provided. The fields described in Figure 2
are optional, and if included, should im
mediately follow the program name 'N'
field. The fields shown in Figure 3 are op
tional, and if included, should immediate
ly follow the Filename 'F' field for each file

to be patched.
Figure 4 gives a brief summary of all

the different PATCHIT.DAT fields, and
shows which ones are required, The reas

F Fi lename to
D Fi leda te
7 Check
& Patch

Comment

* New ent r y
N Program Name
P Publ i sher s Name
S Summary of program
V Version
I Instructions
R Requirements (N, P , Z , C)
C Contributor s name

For each file to be patched (if any)..

patch

(address s i , s 2 , s 3 , . . . s n)
(address s l , s 2 , s 3 , . . .sn) d l ,d 2 , d 3 , . . . d n)

Figure 4

information.

Spreading the News

submitting ZPC patch information, and a
Now that we have a specification for

Required
Required

Required

Required

Required

PATCHIT.DAT Field Summary

41December 1989

R P

& DCCB FO > BO

C Paul F . g e rman Inc .

volunteer (who, me?) to collect, organize,
and distribute it, the only remaining ques
tion is how to make it available to other Z
100 users. Since I must support a family
and run a business, as well as write this
column, I have to be able to cover my ex
penses of handling and distributing the
PATCHIT disk. If you want a copy of the
latest version of the PATCHIT disk (which
includes the PATCHIT.EXE program and
the PATCHIT.DAT file) send me your re

F CADD.EXE
D IO/02/86

Change all instances of ... NOV

DD35 ? > BO
& DD72 ? > 80
6 DDDB '? > BO

& DE2C 6E,FA > 0 ,0
& DE94 ? > 0 ,0
6 DFOF? > 0 , 0

Change all instances of ... NOV

Ihe line above indicates that no patches or ZNS circuit is required

««*«««««**««**«*««*«««««««««**«*««*«**«««*«*«t««««««*««**«««*««««*«««««««««
N Norton Utilities, Standard Edition
P Peter Norton Software
V 4.5
S NS-DOS disk u t i l i t i es
R N

Figure 5
PATCHIT.DAT Program Entry Samples

«*««*** * « * * * * « « * * * « « * * * * * * * « * * * * « * * * « * * ** * « * * * * « « * « * « * * * * « * * « * « * * « «««*+«««
N LogiCADD
P Generic Software
V 2.0
S This is the Logitech version of Generic CADD

I In order to use a mouse with LogiCADD, a PC style CON port will be required.

SI, FA6E ...to... NOV Sl, 0

BX, FOOD ...to... NOV BX, 8000

quest along with a check for $10.00. No
phone orders or VISA/MC orders will be
accepted. The contents of the disk may
be considered to be in the public domain
for anyone to use, so feel free to give it to
anyone you please, or upload it to your
favorite bulletin board.

As most of you know, Z-100 specific
articles are getting harder and harder to
find, so I'm not really willing to squander
valuable column space describing lengthy

news on the ZPC scene.

patches to programs so they will run un
der ZPC. If I published patch information
in this column, there just wouldn't be
much space for more interesting stuff. So
the preferred method o f d i s t ributing
patch information for now will be on disk,
as described above. From time to time, I
may break down and do a column about
new programs that we' ve been able to get
running under ZPC, or other interesting

The Future for ZPC
Although some will skoff at the idea, I

dare say that Pat Swayne's ZPC is one of
the most important pieces of software
that has ever been written for the Z-100. It
is a prestigious piece of work which takes
software PC emulation way beyond the
point most people thought was possible.
I wish I had written it.

tread lightly in this area, because when all
the cards are played, the fact is that the
future of ZPC is for Pat Swayne to deter
mine. It's been several years since the last
ZPC Upgrade disk, and in the mean time,
lots of changes to the ZPC program itself
have been put forth by users. Pat ack
nowledges these m o d ifications, and
agrees that some of them offer substantial
improvements in PC emulation, or pro
gram operation.

published in REMark and SEXTANT maga
z ines. And many are available on the
Heath Bulletin board for all to explore.
Will another ZPC upgrade be f o r th
coming! We' ll just have to wait and see.~

What does the future hold for ZPC? I

Some of the modifications have been

0

o 0

I

L)ada,' &h +

~ ~ N or o d
QBSCngg Q~ ~ g~,IDaul Ii =. Inkerman

36ri~C) Amazon drive
me.an("Sew IDort IPiohev. Il =IL 35~1-6fifi

Learning How to Patch Programs
for ZPC

up to the fact that most of the Z-100
world craves the ability to run PC compat
ible software. A big percentage of the mail
I receive from "Survival Kit" readers is
from people who want to know more
about how to patch programs to run un
der ZPC. I' ve tried to avoid doing this, but
... the pressure is unrelenting. By popular
demand, Survival Kit $10 and $11 will be
devoted to teaching you how to become
an expert in the art of ZPC patching.

Kit g1 that I didn't want this column to
turn into a "ZPC Update" series. That is
still my feeling, but it appears that the
only way I can maintain this position is to
provide ZPC patch information on the
side. The first step in this plan was taken
in Survival Kit P9, where I announced a
new PATCHIT utility, and gave a detailed
format specification for program patch in
formation which is submitted by users.
The obvious next step is to teach you all
how to develop the patches so that all I
will have to do is organize the data and
distribute it.

When in Doubt, Read the Instructions
Probably the most frustrating aspect

of trying to provide technical support to
people who want to develop patches is
the fact that most of the information they
need is right in the ZPC manual. Pat
Swayne has given a very adequate (and

If you will recall, I stated in Survival

I guess I'm just going to have to face

understandable) explanation about the
type of things which require patching for
operation with ZPC.

installment of Z-100 Survival Kit, I will be
guiding you by the hand through proce
dures needed to patch programs. But in
the end, most of what we cover will be
summarized by pages 11 through 14 of
the ZPC manual.

What Seems to Be the Problem?

there are five factors leading to ignorance
about how to make ZPC patches (see the
list in Figure 1).

1. Users don't have an understanding
of assembly language programming.

2. Users don't know how to use an ed
itor like DEBUG to search for areas
to patch.

3. Users don't understand how PC
specific programs work, or w hy
patches are required.

4 . Users haven't r ead p a ges 1 1
through 14 of their ZPC manual.

5. Users don't have a ZPC manual be
cause they have a borrowed' copy
of ZPC.

Figure 1

Over the course of this, and the next,

I am left with the conclusion that

illegal, but immoral. And stealing it from a
users' group i s d o uble-dirty. Shame,
shame! If you fall into group 1, there may
not be any hope for you. At least not for
the next several months, while you take a
crash course in 8088 assembly language.
Yes, most of these patches could be
made by a user who doesn't know what
he is doing, but as soon as something
varies from the game plan which is de
scribed, you' ll be lost, Much of the code
that needs patching can be written in a
number of ways, and developing appro
priate patches will require at least an ele
mentary understanding of what is taking
place in the program.

be because you also fall into category 4.
I' ll be covering specific patch circum
stances in the next installment of Survival
Kit. We' ll take a detailed look at what
types of things PC specific programs do
that cause problems, and what patches
are required to correct them.

ed to group number 2. I know (based on
letters and phone conversations) that
many of you are not proficient in using
DEBUG. It is absolutely necessary that
you understand how to use an editor
which allows byte-by-byte editing of a
file. This could be DEBUG, or SYMDEB,
Norton Utilities, HADES, or any number
of other public domain file editor pro
grams which are available. Our discussion
will concentrate on the use of DEBUG,
mainly because everyone has a copy (it

If number 3 is your problem, it may

The rest of this column will be devot

I tried to express number 5 as politely
as possible; if this is your excuse, then you
really have no excuse. Making unauthor
ized copies of commercial software (yes,
ZPC is a commercial program!) is not only

65January 1990

it.

memory

I find that most users have an ele
mentary understanding of these com
mands. But in order to use DEBUG to find
patches (or make patches), there are a few
additional tricks of the trade that aren' t
immediately obvious from reading the
manual. We' re going to cover each of
these commands in detail, paying special
attention to details which will be necessa
ry for our goal of patching programs. I' ll
describe the commands in t he order
we' re likely to use them, not in alphabeti
cal order as they are listed in Figure 2. But
first, we need to take a look at how DE
BUG is started, and how it loads programs
into memory.

Invoking DEBUG

lowing command:

This command runs the DEBUG pro
gram, and tells it to load the named file

comes with DOS).

DEBUG — A Short Tutorial
DEBUC.COM is a down-and-dirty file

editor that has been included with DOS
since day one. There are lots of alternative
editors available, but I happen to think
that DEBUG is a nice program. It's short.
It's quick. And i t does everything you
need i t t o d o , t o de v e lop p rogram
patches.

There have been quite a few articles
in various publications about how to use
DEBUG. And Zenith's version of the MS
DOS manual contains a more than ade
quate description of how to use the pro
gram. But most users aren't willing to take
the time to s tudy the documentation
thoroughly. DEBUG is one of those kinds
of programs that you don' t use very
much. So it seems a waste to learn every
detail about how to use it. The result is
that you have to refer to the manual each
time you want to use DEBUG, and some
of the finer details of its use are neglected.
I know, because I still have to refer to the
DEBUG manual occasionally when I use

For our purpose at hand, which is de
veloping patches for programs to run un
der ZPC, we don't need to know how to
use all of DEBUG's features. In fact, the
only DEBUG commands we need to wor
ry about are those shown in Figure 2.

A Assemble 8088 code instructions
D Dump (o r D isplay) contents of

E Enter or change memory locations
Q Quit, and return to DOS
R Register c o n tents (display o r

change)
S Search memory
U Unassemble 8088 code instructions
W Write file to disk

Figure 2

DEBUC may be invoked with the fol

into memory. This is pretty simple to un
derstand, but there is a complication; if
the program we want to patch is an EXE
program, its name must be changed be
fore loading it with DEBUG. If you at
tempt to write an EXE file back to disk
with DEBUG, you will get an error mes
sage that says "EXE files cannot be writ
ten".

There is a good reason why DEBUG
cannot write an EXE file to disk, and why
we can't directly patch an EXE program.
The DEBUG manual isn't very clear on this
situation, so let's take a few paragraphs to
find out what's going on.

When you load a program file (.COM
or .EXE) with DEBUG, the program is not
simply loaded into memory. There's more
to it than that. You see, DEBUG is more
than just a hex file editor — it also allows
you to execute or single-step through pro
grams. Therefore, when DEBUC loads a
program, it loads it just as though it was
going to run the program.

program segment prefix (PSP) is built at
the first available load address. The PSP is
100h bytes long, and contains informa
tion that may be useful to the program,
such as the location of the environment
strings, address of the control-C handler
routine, any command line arguments,
etc. Immediately after the 100h byte PSP,
the COM program is loaded. This is exact
ly the way the program would be loaded
into memory by DOS, if you were execut
ing it from the DOS prompt. You' ll notice,
when using DEBUG to investigate a COM
program, or other file, that the (D)ump or
(U)nassemble commands always begin
with address 100h in the current segment.
That's where the actual program begins.
And whenever a program or file is written
back to disk, the default start location for
the write operation is 100h.

The way EXE programs are handled is
completely different. Every EXE program
begins with a header that includes initiali
zation information, as well as relocation
(or fixup) addresses. When DEBUG loads
an EXE program, it does it just as though it
were preparing to run the program. This
means that a PSP is built, and information
in the f ile header is used to perform
"fixups" to the program code as it is being
loaded into memory. Without the address
fixups, you wouldn't be able to execute
or single-step the program. After the pro
gram is loaded, the header information is
simply discarded.

Now, there are several reasons why
the resulting EXE memory image which
has been loaded can't be written back to
disk. First of all, the EXE file header (which
is at least 512 bytes long, maybe larger) is
not stored in memory. It is used to load
the EXE file, and then overwritten. If you
were allowed to write the program back
to disk, it would not contain the required
header information. Secondly, since fix

For COM programs, this means that a

ups were made to the program code after
it was loaded into memory, the code you
see with DEBUG is not the same as the
code in the program on disk (the jump
addresses will be d i f ferent). In o ther
words, the memory image of the EXE pro
gram is different from the disk file image.

Since our main objective is to be able
to make patches to a program, and write it
back to disk, it is obvious we can't work
directly with EXE files. The solution to this
problem is, however, very simple. Just re
name the EXE program so that it has a dif
ferent extension. Then DEBUG will think
it is working with a non-EXE file. My
favorite substitute name is simply the pro
gram name without any extension. In oth
er words, rename TEST.EXE to just TEST.

DEBUG Preliminaries
Okay, let's assume that you have in

voked DEBUG, and loaded the program
you want to patch. If it was an EXE pro
gram, you renamed it first. Now what? Try
hitting 'r' and then RETURN. You should
see something that looks like Figure 3.

This display shows the contents of all
of the 8088 CPU registers, along with the
current instruction pointed to by the in
struction pointer. I'm not going to try to
explain everything there is to know about
this display of register contents — I' ll as
sume that you have the basic assembly
language knowledge it takes to f igure
most of it out (remember group 1?).

There are, however, a few specific
points I would like to make while we are
here looking at the register display. First
off, note that DEBUG displays numbers
(and expects them to be entered) in hexa
decimal notation — exclusively. If you
don't know the hexadecimal (base 16)
numbering system, take time out r ight
here to learn more about it — otherwise,
you' ll be lost.

tain the same value (2044h in our exam
ple). This will always be the case for COM
programs or plain vanilla files. The actual
segment address may (probably will) be
different on your system. It will even be
d ifferent depending on what type o f
memory-resident utilities or device drivers
you have loaded before invoking DEBUG.
The address shown in these segment regi
sters is the first available load address. Re
member, the PSP is loaded at this seg
ment address, and then the program is
loaded. Look at the value for IP (the in
struction pointer) in Figure 3. The fact that
it says 100h should be no surprise at this
point.

There are two other registers which
are significant to our patching goal. Regi
sters BX and CX will contain the length of
the program which was loaded. The actu
al length is BX:CX. For programs which are
less than 64K (65536) bytes long, BX will
be zero. In the example shown in Figure
3, the length of the program we loaded is

Notice that DS, ES, SS, and CS all con

DEBUG filename.ext

66 January 1990

0 001:2FOOh (which i s t h e s ame a s
12FOOh). This translates to 77568 decimal
bytes. The length of the program will be
very important when it comes to search
ing for patch locations.

Okay, now we' re ready to examine

D588

value.

tax is:
D[address] [L va lue i

The address you specify is the start
memory address for the bytes to display.
The address may be composed of a seg
ment and offset, or simply the offset. If
just an offset is specified, the current data
segment (value in DS) will be used. If no L
value is specified, 12B (80h) bytes will be
displayed. Here are some examples:

This command will dump 128 bytes
beginning at offset 500h in the current
data segment.

This command will dump 100h bytes
beginning at segment address 3044h, off
set 2000h, Notice that this is offset 2000h
into the second 64K of the program, as
suming that the initial data segment is
2044h, as shown in Figure 3.

If you simply type 'D' with no argu
ments, the next 128 bytes (since the last
Dump command) will be displayed.

The Dump command will be useful
to us for finding particular locations in the
file to patch. Sections of the program
which contain ascii text may be quickly
examined by using the Dump command.

E — Enter or Change Memory Locations
The 'E' (Enter) command is used to

view a particular memory location, and to
change it. The syntax is:

where 'address' is the memory location
where you want to b egin viewing or
changing values. DEBUG also allows you
to include a list of hex values on the 'E'

the individual DEBUG commands.

R — Register Contents
(Display or Change)

to display the contents of all the CPU regi
sters. You can also use this command to
change the register values. Enter 'R' imme
diately followed by the two letter name of
the register you want to change. For ex
ample, type 'RCX' if you want to change
the CX register. After you hit RETURN, the
current register value will be displayed,
and you will be allowed to type in a new

You probably will not need to change
the values of any registers when patching
programs. The most important use for the
'R' command, for our purpose here, is to
determine how long the program is, and
to find the segment load address.

D — Dump (or Display)
Contents of Memory

The (D)ump command is used to dis
play the hex values of memory. The syn

This is the command we used above

D3844:2888 L 188

E528

S3844:8 FFFF 'Z188'

S188 588 58 61 75 6C

S188 L 488 58 61 75 6C

S3844: 8 FFFF 5A 31 38 38

This command tells DEBUG to search
400h bytes beginning at offset 100h. This
example has exactly the same results as
our first Search example.

One important t ime-saving feature
you' ll want to note is that the 'list' of bytes
to search for may be given as an ascii
string of characters, instead of a list of hex
bytes. The ascii search string should be
enclosed in single quotes, like this:

This is exactly the same command as
our second example above, except it is a
lot simpler to enter.

DEBUG's search range is limited to
OFFFFh bytes, so if you have a program
which is longer than 64K, you' ll need to
search it in several steps. For instance,

command line, but we won't need to
worry about that feature. As an example
of how the Enter command is used, sup
pose we want to change several bytes be
ginning at offset 520h in the program. We
would issue the command:

followed by a return. DEBUG will display
the present value of the byte at offset 520
in the data segment, and then allow us to
change it. If we decide we just want to
skip this byte, we can simply hit the
spacebar. After a new value is entered, or
the spacebar is struck, the next byte is dis
played for our review. This continues until
we hit the RETURN key. As with the
dump command, the address used with
the Enter command may include a seg
ment prefix if the memory address isn' t
within the first 64K of the program.

tool for patching programs, so you must
understand exactly how it works. If doubt
still lingers, fire up DEBUG and play with it
a bit. The best way to get the hang of it is
practice, practice, practice!

S — Search Memory

most powerful tool we have in our quest
for proper patches. (The most important
tool is, or should be, your brain). The
proper syntax for the Search command is:
S raage l i s t

to begin, and how many bytes to search.
This may be done by specifying a start
and end address, as in this example:

which will search from offset 100h to
500h for the occurrence of four bytes with
the values 50h, 61h, 75h and 6Ch (' Paul').
We could have also used a segment prefix
for the start address, like this:

This example would search 65535
bytes beginning at paragraph 3044h for
the four specified bytes. Another way of
telling DEBUG the search range is by spec
i fying the actual number of by tes to
search, instead of the end address. For ex
ample:

The Enter command will be our main

The Search command is the second

'range' specifies where the search is

or

S2844:8 FFFF 'Heath '
S3844:8 FFFF 'Heath '
S 4844:8 FFFF 'Heath '

While DEBUG is searching memory,
the segment:offset of each match is listed
on the screen. Be prepared to use Con
trol-5 if you are searching a large range,
because the list of match addresses may
quickly scroll off the screen.

It doesn't hurt anything if you tell DE
BUG to search a range which extends be
yond the limits of the currently loaded
program. But be sure to check the pro
gram length to m ake sure that any
matches you find fall within the program
area. Another thing to keep in mind is that
DEBUG's searches are case sensitive. This
means that searching for 'Heath' will not
find an occurrence of 'heath', since the
first character is not capitalized. A good
practice when searching for words which
may be capitalized, is to start the search
string with the second letter. For instance,
if you are looking for the copyright notice
in a program, search for 'opyright'.

A couple of important notes about
DEBUG versions.. . Some of the older
versions of DEBUG may not allow you to
enter your search list as an ascii string.
Check your documentation (or just try it)
to determine if your version falls into this
category. Also, some versions of DEBUG
may impose a search limit of 8000h bytes,
instead of OFFFFh. If you have one of
these versions, and you need to search an
entire 64K block of code, you' ll have to
do it in two steps.

U — Unassernble 8088 Code
Instructions

to see the CPU instructions that make up
the program. Without the 'U' command,
the program is nothing but a bunch of hex
bytes. We will use the Unassemble com
mand extensively to determine where
patches need to be made. The syntax for
this command is:
U[addressl [L va lue l

U[rangeI
As with the Search command, 'range'

may consist of a start and end address, or
a start address and the number of bytes to
unassemble. If only the start address is
given, 32 bytes will be unassembled be
ginning at the specified address. Or you
can specify the number o f b y tes to
unassemble with the 'L' option, If the 'U'
command is given with no arguments, 32
bytes are unassembled beginning at the
current position of the instruction pointer.
If the instruction pointer (IP) has not been
altered since the last 'U' command, then
the unassembly will continue from the
point last unassembled. Unlike the Dump

suppose the program is 192K long, and
our registers after starting DEBUG are as
shown in Figure 3. In order to search the
entire file for the string 'Heath', these
three commands would be required.

. .

The Unassemble command allows us

Eaddress

January 1990 67

U188 158

offset 0,
U

U3844 8 L 58

-r

This example will unassemble 50h
bytes in paragraph 3044h, beginning with

and Search commands, the Unassemhle
command (and Assemble command) use
the value of the code segment (CS) if no
segment prefix is given. This may all be a
bit confusing, so let's have a few exam
ples:

This command causes the bytes be
tween 100h and 150h of the current code
segment to be unassembled.

If this conimand (Unassemble with
no arguments) were issued immediately
after the previous example, i t w ou ld
cause the next 20h bytes to be unassem
bled.
A — Assemble 8088 Code Instructions

The Assemble command is the coun
terpart to the Unassemble command. It
allows you to enter 8088 mnemonic in
structions, and wil l convert them in to
byte values. In other words, it allows you
to enter assembly language program in
structions. The syntax is simple'.

If an address is specified, assembly of
instructions will begin at that address. The
address may contain the segment, as well

Figure 3

AX=8888 B X=8881 C X = F8 8 D X = 8888 S P =FFEE B P=8888 SI = 8 888 D I =8888
DS=2844 E S=2844 S S =2844 C S =2844 I P= 8 18 8 N V UP EI PL NZ NA PO NC
2844;8188 8 1711F ADD [BX+DI+1FI,SI

TURN.

W — Write File to Disk
After we have found our patches, and

made our changes, the 'W' command is
used to write the file back to disk. The
Write commancl may he used with argu
ments which will cause it to do all kinds of
neat tricks, but for our purposes, all we
need to know is 'W' , fo l lowed by RE

One thing you should take note of,
however, is that the actual number of
bytes written to disk is controlled hy the

as offset. If no address is specified, assem
bly will begin at offset 100h in the current
code segment, or at the last address
where instructions were assembled.

method we have for changing the pro
gram code. It may be preferable in sortie
cases to use the Assemble command to
patch programs, instead of the Enter com
mand. This is particularly true when we
need to change large areas of ascii text,
since we can use the Assemble command
to enter DB instructions like this:
D B 'Z-188 Sul v iva l t t i t '

This is much easier than looking up
all the hex values for the ascii characters,
and entering them one at a time with the
Enter command.

A[address]

The Assemble command is another

BX:CX registers. Remember way back at
the beginning, when a program is loaded,
that the BX;CX registers contained the
program length. DEBUG uses this value to
determine how many bytes to write. So
make sure that registers BX and CX don' t
get changed between the time you load
your program and the time you write it
back to disk.

Q — Quit, and Return to DOS

Hit 'Q' and RETURN. Your done! DEBUG
doesn't give you a second chance on this
one, so make sure you have saved your
changes by using the Write command.

One tip for the time when you do
inadvertantly quit without saving your
patched program. . . If you invoke DE
BUG again, immediately, and without any
command line parameters, you' ll find that
your program is still there, intact. Howev
er, the program length will not be properly
recorded in the BX:CX registers at this
point, so you' ll have to be sure and set
them to the proper length before issuing
the Write command to save your work.

Get Ready for the Good Stuff!
We now have most of the prelim

inaries out of the way. In the next issue of
Survival Kit, we will begin probing deeply
into the why's and how's of making ZPC
patches. In the mean time, practice using
DEBUG until you know these commands
we have discussed. Your time will be well
spent.

It doesn't get much simpler than this.

Until then, keep in touch!

I-a''

Q Z-100 LifeLine
A Professional Journal Exclusively for the Heath/Zenith Z-100 Computer

information.

If you own or use a Heath/Zenith Z-100 computer, you' ll be
interested to hear that beginning in April 1989, Paul F. Herman Inc.
began publishing Z-100 LifeLine Journal. This is a publication devoted
exclusively to the Z-100, by the author of RFMark's Z-100 Survival Kit
Column. Each issue has at least 16 pages of useful and practical

We' ll be covering all the bases; Z-100 happenings, software &
hardware reviews, how-to anicles, programming tips, and lots of code. A
regular Q 8t A section is included where Z-100 experts will answer your
tough Z-100 problems. Z-100 LifeLlne also sponsors its own Z-100
public domain library.

Z-100 Lifeline is published six times per year. You may mail your
check or money order (payable in U.S. dollars to "Paul F. Herman Inc.)
to the address below. Or you can call our toll free order line and use your
VISA or MasterCard. Reader Service EIE107

One Year Subscription
In the United States(addresses with U.S. Zip ccxie)
Canada and Mexico (Air Mail)
All other countries by Surface Mail

or by Air Mail

S00-346-2152

Bortda residents MUST Include 6% sales tax. Charge card orders must
specify VISA or MC, and include the card number and expiration date.

V/SA Paul F. Elerman lne. g @
3620 Amazon Drive

New Port Richey, FL 34655

68 January 1990

I IIIo < AlA
IIJI IAP AJVI'

I I I fVII Wl I O
0

0
4h urv™i Ya

o 0

C~l~l
~~ 'Mo r o d.

QeFe<Se clear mc~;IDaul Ii =. Inkerman
3CiiD Amazon drive

M+4~ (~<ew IDort IPichev. Ii=IL 3~i.6fif i

Patching Programs to Run Under ZPC
The last two installments of Z-100

Survival Kit have dealt with the subject of
patching programs for use under HUG's
ZPC emulator program. In the fast issue
we covered some of the preliminaries,
like how to use DEBUG. This month's col
umn will conclude the discussion with
specific details of what types of problems
we encounter in PC programs that require
patching to run under ZPC.

Surveying the Scope of the Problem
It seems to me, the most logical way

to go about this project is to start from the
top and work down. By that, I mean to say
that we first need to understand the major
reasons why patches are required, and
then consider some of the strategies for
making the patches. Then, as space per
mits, we can go into some examples of
actual patches that might be applied to a
program. I'm sure that a comprehensive
treatment of the subject, that covered
every aspect of patching programs for
ZPC, would easily fill a large book. And
I'm also sure that the book would never
make the 'best seller' list. We' ll just have
to do the best we can, with the resources
and space that is available.

Patch Logic — Why Some PC Programs
Won't Run Under ZPC

p roblem of PC c o mpatibility for t he
Z-100. And although the emulation pro
vided is amazingly complete,considering

ZPC is a software solution to t he

1.

the differences between a Z -100 and
IBM-PC, some things just can't be emu
lated. These 'un-emulatable' things tend
to fall into specific categories. See Figure

Port Accesses
Unsupported Interrupts
The Graphic Character Table
BIOS Data Segment Accesses
Specific Hardware Constraints

General Patching Categories

Far and away the most common reas
on a program won't run under ZPC is be
cause it makes accesses to ports which
don't exist on a Z-100. The I/O port map
of an IBM-PC doesn't bear any resem
blance to that of a Z-100. So any port
ac.cesses made by PC software are poten
tial troublemakers.

ing of interrupts. Since interrupts are pro
cessed by software interrupt routines,
there is a great potential for software em
ulation of interrupts, and in fact, this is
how ZPC provides most of its PC compat
ibility. But there are a few PC interrupts
that cannot be supported because of
hardware incompatibilities.

many PC programs is held in PC memory
at an address already used by the Z-100's
MTR-100 monitor ROM, which precludes
moving a copy of the table there for an
emulated environment. This problem is

Figure 1

Another area of concern is the handl

The graphic character table used by

as.

easily overcome by patching the address
of the table in PC programs.

BIOS data area directly to learn aboIIt sys
tem parameters and addresses. Where
possible, ZPC has tried to replicate the PC
data area, but there are still problem are

And finally, there are some hardware
devices and accessories for PC compati
ble computers that just don't lend them
selves to sofhvare emulation. Good ex
amples would be EGA/VGA video cards,
sound generation hardware, and direct
access of I/O hardware by PC programs.

A Note About ZHS Circuits and ZPC
Many of the patches we will be dis

cussing may be unnecessary if you have a
ZHS circuit (Scottie board) installed in
your Z-100. This simple hardware device,
described in previous issues of REMark,
allows many PC compatible programs to
run under ZPC, which would othenvise
require patches. My discussion here, how
ever, will assume that no Scottie board is
installed.

General Patching Strategy

cess of locating patches to correct specific
problems, an explanation of our overall
strategy would be in o rder. The basic
methods we will use will be the sanle, re
gardless of what particular patch we are
goIIlg t'0 ITlake.

Some programs access the IBM-PC

Before we dive into the actual pro

The hardest part of the patching pro

March 1990 35

cess may be in deciding what type of
patches are required. There will be some
clues. For instance, if text on the screen is
unrecognizable, that's a good indication
that the address of the graphic character
table needs patching. But in many (if not
most) cases, the program will sinlply hang,
or < rash. Trying to decide what to look for
will be difficult, and may be' a matter of
experience and intuition, more than any
thing else.

Once we know what we' re looking
for, we' ll use DEBUG to do the searching.
Sometimes the search will be as simple as
looking for a text string. But other times,
we' ll neecl to use the unassemble com
mand to find the byte values of likely As
sembly Language instrue.tions. In many
cases, there will be more than one way
the Assembly code we' re searching for
could he written. This will require some
skill in Assembly Language, anel a great
deal of patience.

As an example, we may want to
search for accesses to the PC ports. These
accesses might be done with Assembly
Language instructions like this:

gram can now be written back to disk and
tested, if desired. Of course, you should
also make a note of the changes you have
made', so that you will not have to go
through this laborious procedure again in
the future. And if you are finally successful
in getting the program to run under ZPC,
you should send a copy of the patches to
me, so that I can spread the news around
a hit.

Port Access Patches
The way a program communicates

v ith its harrlware environment is hy read
ing and writing to ports. Ports are ac
cessed by a particular port address. In the
Z-100, all of the I/O ports have adctresses
whictl must range between 0 and OFFh. In
an IBM PC, the I /O p o rts may have
addresses anywhere tletween 0 and 3FFh,
Special instructions are used to communi
cate with p o r ts. And p o r t a d dresses
should not be confused v ith RAM mem
ory addresses.

The Z 'IOO has no I/O ports in com
mon with thc IBM PC. (See Figures 2 and .3
for a breakdown of the Z-100 and IBM PC
ports.)

A8-AB
AC-AF
80-87
88-BF
DB-DB
DC-DD
DE
EO-E3
E4-E7
F8-EB
EC-EF
FO-F1
F2-F3
F4-FS
FB
FC
FD
FE
FF

Parallel Port

Z-100 Port Usage

the single page of Z-100 ports.
If you want to become an expert at

the art of ZPC patching, you' ll need to
compile all the information you can about
how each I/O port in the IBM PC and the
Z-100 is programmed, and what each bit
of each byte does. This way, you can go
through a particularly troublesome patch
ing problem, and analyze which port
accesses are benign, and which are seri

Figure 3

M OV DX . 3 DB
O UT DX . A L

command to determine that these As
sembly instructions have the following
byte values:

We can use the DEBUG unassemble
000-OOF
020-021
040-043
060-063
080-083
200-207
210-217
278-27F
2F8-2FF
.320-32 F
378-37F
3BC -3BF
3CO-3CF
3DO'3DF
3 FO-3 F7
3FB-3FF

BA DB 03 MOV DX. 3 D B
EE O UT D X , A L

command to search for occurrences of
these bytes, like this:

This sounds simple enough. (If i t
doesn' t, then you need to go back and
read Z-100 Survival Kit $10, which was a
quick DEBUG tutorial.) But there is a big
catch. The Assembly code doesn't have
to look like that shown above. The DX
register could be loaded from another ad
dress. Or the MOV DX instruction might
be separated from the IN instruction by

Of course, you could be sure of find
ing all of the port accesses by simply
searching for all occurrences of the port

S0 FFFF BA DB 3 EE

other code.

Now we can tuse the DEBUG search

IBM PC/XT Port Usage

access instructions:
I N AL , DX
I N AL , (por t nu mber l
O UT DX , A L
O UT t p o r t nu mber) . A L

So strictly speaking, ANY port address
by a PC program is a likely troublemaker.
We are, however, lucky in two respects.
First of all, direct port accesses are not
necessary if a programtakes advantage of
the IBM PC BIOS services, so not many
programs make port accesses except for
the video ports. Secondly, many of the
common port addresses do not conflict
with the Z-100 ports, or cause no trouble
if they do. If there is an attempt to write to
a non-existent port, nothing happens.

There is one major problem that is
caused by the two different addressing
schemes used by the Z-100 and IBM PC..
Whenever a PC port with an address of
greater than OFFh is accessed, the high
byte is ignored, causing an access to the
port whose address is indicated by the
least significant byte. In other words, all
four pages of PC ports are mapped into

DMA Con(roll pr
Interrupt Controller
Timer
Pl A, Keyboarrl
DMA Page Registers
Came I/O Adaptor
Expansion Unit
Parallel Printer 2
Secondary COM Port
Hard Disk Controller
Parallel Printer
Monochrome Display Adaptor
EGA Adaptor
CGA Adaptor
Floppy Disk Controller
PrimaryCOM Port

Figure 2

ous.

Reading the Port Status
One of the most common problems

associated with port accesses involves
programs that try to read the status of a
port. Reading a port will never cause any
thing to crash directly — it is a harmless
act. The problem comes when the pro
gram insists on waiting for a particular port
status to change.

program wants to write directly to video
RAM on a CCA display. On some IBM PC
models, if the video memory is accessed
at the same time the screen is being re
freshed, interference will appear on the
screen. In order to avoid this problem,
many programs check the video status
register (port 3DAh). Bit 0 of this port indi
cates that it is okay to access video RAM.
The code used to check the video status
may look like this:The problem with this is that you

would have to sort out the long list of
prospective candidates to see which ones
are significant, and which ones are simply
random data that happen to have that
byte value. .

I think you can begin to see why a fair
amount of Assembly Language know
ledge is necessary to become proficient in
ZPC patching.

is found, then we need to make the
changes to the program using the DEBLlC
enter or assemble commands. The pro

MOV DX . 3 DA
LOOP: IN AL . DX

T EST AL , 1
JZ LOO P

The problem here is that when the
program tries to read port 3DAh, it really
reads port ODAh, which is the CRT-C ad
dress latch port on a Z-100. Chances are
good that bit 0 of the address latch port
will never satisfy the test in the code
above, so the program will loop forever.
The result, from the operator's point of
view, is that the computer is locked up.

A good example of this is when a

Primary Hard Disk Controller
Secondary Hard Disk Controller
Prinlary Floppy Controller
See'ondary Floppy Controller
Video Control Port
CRT Controller
Light Pen

Timer
Serial Port A
Senal Port 8
Slave Interrupt Controller
Master Interrupt Controller
Keyboard
Timer Status
Memory Control Latch
High Aefdress Latch
Swap Port
DIP Switc h

After the patch location (or locations)

36 Mare h 1990

pl'ogl anl.

The patch that is required to corre< t
this situation is Ieally simple. Simply re
place the IN, TEST, and]Z instructions
with NOP's. Or vou could just replace the
JZ instruction with NOP's, since reading
the status isn't going to hurt anything. Or
you could replace the IN instruction with
a JMP to the end of the loop. Whichever
way you do it, the result is that we elimi
nate testing the port status. This simple
example should demonstrate that there
n1ay be several ways to make a patch to a

Now, I know a few of you are asking
"how will the program operate with this
code removed!" That's a good question,
and one whi<'h you will always have to
consider when making patches. In this
particular example, the patched out code
won't make any difference, because the
Z-100 doesn't have any problem with in
terferen<.e when writing to the screen. But
in other cases, the status read from the
port may be used hy subsequent instruc
tions. If this is the case, you may have to
tailor your patch tn provide the desired
response. In our example above, suppose
that the program saved the status byte
and used it for some other test. Then we
might make a patch that looks like this:

way.

located.

Int
00
01
02
03
04
05
08
09
08
OC
OD
OE
OF
10
1'I

12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F
20
21
22
23
24
25
26
27

grain was trying to write some thing to a
port, there n1ay be ramifications i f i t
doesn't get done. In some cases, the pro
gram will work correctly under ZPC any

The purpose of this discu~sion has
heen to try to give you a 'feel' for the reas
oning behind the pat< hes. The explana
tion has been conspi< uously shy of con
crete examples, mainly because it would
be impossible to cover al l the possi
bilities. And I don't want to mislead you
into thinking that you can look for a few
fixed samples of code. You MUST undr r
s tand the logic of what needs to h e
patched.. . then you can worry about the
specific code fragments that need to he

Reading the ZPC UsPI's Man<lal is an
important part of the learning process.
Along with a description of which intPI
rupts and other services that ZPC emu
lates, are dis<.ussions of program patching.
For some of you who M,ould lik< to see
some concrete examples o f p r ogram
patchPs, th<' ZPC n1anual has a few,

patching accesses to I/O ports, I need to
Before we f inish our discussion of

MOV DX , 0 BDA
MOV AL . 1
JMP L OOPEND

Writing to a Port

lems crop up when a program tries to
write data to a port. Now, instead of just
being a harmless access which may result
in an endless loop, we have the program
trying to tell the hardware what to do.
And in every case, the expected hardware
is not there. The best we can hope for is
that the port instruction will be ignored.

Suppose that a PC program wants to
change the graphics mode, and elects to
do it by writing directly to the video mode
control register (port 3DBh) instead nf us
ing the BIOS services. The access to port
.3DBh will be mapped to port ODBh in the
Z-100, which is the video control register.
It is only a coincidence that both of these
port addresses happen to be video con
trol registers. The sad fact is that any ac
cess to the PC's video mode port is going
to make strange things happen to the
Z-100's screen display.

write to port 3DBh to change the video
mode, since a lot of nther overhead is re
quired in addition to this simple register
access, and since it is so easy to use the
P C's ROM BIOS to m ake th e m o d e
change. Hut there are other video ports
that are used commonly, and can cause
just as disastrous of effects.

problems is simply to patch out the of
fending instructions with NOPs, and hope
for the best. Obviously, since the PC pro

A completely different set of prob

There are hardly any programs that

The solution for cases which cause

Type
System
Syst<'I'n
SystP n1
System
Sy st<' n1

BIOS
Hardvvare
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS

terrupts.

Description
Divide by Zero
Single-Step
Non-Maskahle Interrupt
Breakpoint
O vert l�ov
Print 5<'reen
Tin1< r
Keyboard
COM2
COM1
Hard Disk
Floppy Disk
LPT1
Video Servi< es
Equipment Check
Mpnlon/ Size
Disk I/O
Serial I/O
Cassette I/O
Keyboard I/O
Parallel I/O
Resident BASIC
Bootstl'ap
Tlnlel
Keyboard Break
Timer Tick
Address of Video Parameters
Address of Disk Parameters
Address of Graphics Characters
Program Terminate
Function Request
Terminate Address
Cnntrol-C Address
Fatal Error Address
Absolute Disk Read
Absolute Disk Write
Terminate/Stay Resident

Figure 4

call your attention to the ~ection "Patch
ing Programs: the K<'yhoard Interrupt" in
the ZPC n1anual. This is required reading
for all prospective patchers. The keyboard
port (port 60h) naturally does not exist at
that port address in the Z-100, hui i t is
such an in1portant service, that some pro
vision had to be made to emulate it. This
was handled hy using two interrupt handl
ing routines; INT 90h and 91h. Generally
speaking, you can patch any instructions
whi< h read from ports 60h and 61h with a
software interrupt to INT 90h or 91h, rc
spec tive ly, and the code returned in regi
ster AL will be a value appropriate for the
original port a<.cess.

Unsupported Interrupts
Another thing which may cause prob

lems when running PC programs under
ZPC is an u nsupported interrupt. Of
course since the program is really running
on a Z-100 conlputer, there won't be any
unsolicited PC hardware interrupts tn
worry about, but the program may issue
software interrupts that cause problems.

Figure 4 shows a list of IBM PC/XT in

I BM PC/XT Interrupts

37March 1990

ure 5.

00
01
02
03
04
05
20
21
22
23
24
25
26
27
40
41
42
43
44
45
46
47

The interrupt table for a Z-100, run
ning in native Z-100 mode is shown in Fig

You should note that in both oI' these
interrupt table descriptions, there are oth
er interrupts which have been defined.
The ones shown are those which are most
commonly used.

Of these, the first five (0 through 4)
are defined by Intel for an 8088 system,
and therefore, are equivalent between a
PC and Z-100. Interrupt 5 is for support of
the Print Screen key, and will typically not
be found in a p rogram. Interrupts 6h
through OFh are generated by the PC
hardware, and are difficult to emulate
with software, but ZPC does synthesize
an interrupt 9h to indicate keyboard a«tiv
I ty.

Interrupts 10h through 1Fh are all
vectored to entry points in the PC's BIOS
ROM, and are typically called via a soft
ware interrupt in a program. These inter
rupts are very commonly used, and luck
ily, they are undefined in the Z-100's nor
mal interrupt table (compare with Figure
5), and therefore, available to use for em
ulation purposes. ZPC does a good job in
emulating these interrupt services. The
specific interrupts which are supported by
ZPC are listed in the ZPC User's Manual.

The Interrupts between 20h and 27h
are MS-DOS defined interrupts, and are
compatible between the PC and Z-100.

Even though many of the interrupts
have been emulated successfully by ZPC,
many have not, It is these cases where
you will receive the infamous "WILD IN
TERRUPT" message when attempting to
run PC software. If you run into a program
that uses an unsupported interrupt, about
the only thing you «an do is patch the in
struction out with NOPs and hope for the

Hardware
Hardware
System
System
System
BIOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

Timer

Z-100 Interrupts

Divide by Zero
Single-Step
Non-Maskable Interrupt
Breakpoint
Overflow
Print Screen
Program Terminate
Function Request
Terminate Address
Control-C Address
Fatal Error Address
Absolute Disk Read
Absolute Disk Write
Terminate/Stay Resident
Parity Error
Processor Swap

Slave I C
Serial Port A
Serial Port B
Keyboard/Light Pen/Verti
Parallel Po<t

Figure 5

crash.

The Graphic Character Table
Whenever a PC prograni writes text

on the screen while in graphics mocle the
text character font designs are looked up
in a table in PC memory. This is known as
the graphic character table, and it is lo
cated at address F000:FA6E. It would be
nice if this table could be put in that loca
tion for emulation purposes, however, the
Z-100's MTR-100 ROM o ccupies that
space already. (An experin>ental MTR-100
ROM version has been independently de
veloped which includes this table, but it is
not yet available — see Z-100 LifeLine Is
sue P4 for further discussion.)

The cure for this problem is relatively
simple. Simply find where the PC program
is accessing this table and patch the ad
dress so that it points to the table ZPC has
provided, which is at memory location
8000:0000. There are a number of differ
ent instructions that a PC program might
use to access this table, but it is usually
pretty easy to find the table references by
searching for the FA6E address. Remem
ber when you are conducting your search
with DEBUG, that the byte order that Intel
uses places the least significant byte first
in a word. Therefore, you should search
for the bytes 6Eh, OFAh, in that order.

BIOS Data Segment Accesses
In a real IBM PC, the segment begin

ning at paragraph 40h is used by the BIOS
as a data segment. This area is normally

best. If you' re lucky, the interrupt call will
not affect the operation of the program,
and everything will work okay. But if the
program is trying to perform Disk I/O
through the BIOS, or other critical func
tions, the program will aln>ost certainly

cal Retrace

destined for failure.

used as a BIOS jump table by the Z-100,
but Pat Swayne has figured out how to
make this area available for use by ZPC for
PC BIOS data. Most of the data values
maintained in this area by ZPC are typical
of what you would find on a real PC, and
won't cause any problems. But if you run
into a program that is trying to manipulate
the PC BIOS type ahead buffer directly, or
trying to determine hardware status, it will
have problems. About the only thing you
ran do in these cases is patch the program
so that it returns with the expected value.
This may or may not affect a cure.

Specific Hardware Constraints
Luckily, most PC software is fairly well

behaved. That is to say that most software
uses the BIOS or DOS for communication
with the hardware. The major exception is
direct access of the video RAM, but ZPC
has solved this problem nicely.

Son>e programs, however, will insist
on comn>unicating with the hardware di
rectly. Any attempt to con>n>unicate di
rectly with the video ports, serial or paral
lel ports, interrupt controller, DMA con
troller, keyboard chip, etc. must be patch
ed. In most cases, patching out an access
to a hardware device will cause the pro
gram to crash anyway. The most likely
candidates for patching are the video port
accesses. If you have a ZHS circuit with
COM ports installed, direct accesses of
the COM ports should be okay.

Tough Dogs
When you consider how many things

could prevent a program from being run
successfully under ZPC, it is incredible
that any programs work at all, As it turns
out, most programs can be made to work
under ZPC, if you spend enough time try
ing. And you will find that most programs
only require simple patches for video port
accesses or the graphic character table.

There are times, however, when ex
traordinary measures may be necessary, If
you have gone through a program and
patched everything in sight that looks ille
gal and the program still refuses to run,
you may want to reconsider just how im
portant it is to use this program on the
Z-100. If you still want to proceed, then
you can try to single-step through a pro
gram, using DEBUG or SYMDEB, until you
find the cause of the problem. This can
(probably will) be a laborious task which
requires real programming expertise. Even
so, if a program uses overlays, is selt modi
fying, or is memory resident, you may be

Are you reading
a borrowed copy of REMark? f

Subscribe now!

38 March 1990

®
l le < AM4
I ill Ill& Ahh'

iii glhlWI>ll

docs Qpp.+
QeknSe Ele4u~ce;

+4a~ ~o props+'IPaul Ii =. Nerman
3KRO ckmazon drive

New IPort IPichew. Ii=IL 346f i5

This issue I' ll devote the entire col
umn to questions and answers I' ve re
ceived from Z-100 users. Here we go.. .

Question: How can I wr i te a key
board input routine in Assembly, 'C; or
Pascal, which will respond to the non
ASCII keys on the keyboard. Also, how can
I determine if the SHIFT, CONTROL, and
CAPS LOCK keys are downP

Answer: This is a pretty broad ques
tion, about which an entire column could
be written, I' ll try to give a few pointers
here. First of all, if you are using the 'C'
language, or Pascal, or any high level lan
guage, standard library functions should
be available to read the keyboard. To
day's modern language implementations
usually give the programmer several dif
ferent types of character input routines,
each of which may be useful in different
situations. Some languages attempt to fil
ter unwanted characters from the input
stream (BASIC is notorious for this) and
make reading non-ASCII characters diffi
cult. But most languages allow you to read
the actual characters which are read by
the DOS input routine. Obviously, if you
are using Assembly Language, you won' t
have any filtering problems since you will
be using DOS function calls for keyboard
input.

In any case, if you need to use non
ASCII keys in your program, it is usually
easier if you disable the key expansion
feature. This is done by sending an ESC > y
(hex codes 1B 3F 79) to the console.

When key expansion is disabled, a single
key code is returned for each key that is
pressed. (See the Z-100 User's Manual,
Appendix B, for key codes and escape se
quences.) The default DOS mode (key ex
pansion enabled) causes many of the
keys to return an ESC code, followed by
another key code. It is easier to handle
special non-ASCII keys when they only re
turn one unique key code. If your pro
gram does disable it again before exiting
member to enable it again before exiting
to DOS. This can be done by sending ESC
I x (hex codes 1B 3F 7B) to the console.

In its normal ASCII scan mode of op
eration, the keyboard encoder considers
the SHIFT, CONTROL, and CAPS LOCK
keys to be modifier keys, and they do not
generate a key code when they are
pressed. This makes it impossible to mon
itor the state of these keys, as is done in
an IBM-PC. There is a way that you can
tell if the keys are down, and that is by us
ing the up/down (event driven) mode of
the keyboard. In up/down mode, the
SHIFT, CONTROL, and CAPS LOCK keys
generate separate up and down codes
when they are pressed and released (just
like any other key). In order to take advan
tage of this feature, your entire keyboard
input routine would need to be written to
use up/down mode. This would be a
challenging project which is beyond the
scope of this question and answer sec
tion. Even using up/down mode, you will
not be able to tell whether it is the left or
right SHIFT key that is down, like on a PC

'+

clone. The keyboard encoder chip itself
would need to be reprogrammed to make
this possible.

Question: I'm u s ing the BI O S
CONOUT routine to output text to the
Z-100 screen. But I'm having trouble posi
tioning the text on the screen. I' ve tried
changing the HORZ CHAR and VERT
LINE variables in the MTR-100 data seg
ment before writing text to the screen, but
the text still appears right where it left olf
the last time. Plus, when control returns to
DOS, the cursor is stil! at the same spot it
was before my program took over. What
do you suggest?

cation doesn't change when you manipu
late the HORZ CHAR and VERT LINE
variables in the MTR-100 data segment...
I would need to look at your code. The
D CRT and S CRT routines in the MTR
100, which are eventually called by the
BIOS CONOUT routine, do use these
variables to determine the next character
position on the screen. Likewise, the
problem with the cursor is also mysteri
ous. Whenever BIOS CONOUT is called
to output a character, the cursor is auto
matically updated. There is more to this
than meets the eye. I suspect that you
may be using a wrong value for the offset
to the variables in the MTR-100 data seg
ment, or you may be using some other
routine to output the characters on the
screen. For instance, if you are calling the
MTR-100 DFC (Display Font Character)

Answer: I'm not sure why the text lo

33May 1990

'+ '+ '+

routine dirvctly from your program, the
symptoms you describe would result.

Sorry I can't give <Ivfinitive answvrs
without seeing some code, but thc rc' is an
important point to note here. Thv MTR
1(10 ROM prog>ram is a vvry coinplex pro
gianl that makes it possible for the Z-100
to operate. Many of the functions provid
ed by thv MTR-100 are intc'rtwinvd, so
that changing one thing caiisvs problef11s
elsewhere. If you plan to gvt into thv
MTR-100 clata segment and change val
ues, you need to know how each of those
variables is used by the ROM program. Of
coiirse, it w o n ' t h i i r t anything to p l ay
art>und a hit. But if you want to write rvlia
ble software, you might hc' better off do
ing things thv 'wc II-behaved' way.

The best way to change the cursor lo
cation is to cise thv ESC Y escape se
quence. This is well documvnted in the
Z-100 User's Manual, Using ES(. Y auto
matically takes carv of all the overheacl as
sociated with cursor and text positioning.

Question: I have writtvn a pop-up
memory resicfvnt utility which nvecls to
savv the existing screen when it tal es con
trol. When 64K iiclvn RAh,f chips are in
stallecl, there is supposerl to be enough
mcmorv fnr two pages of vicleo mrmnry,
so I thought I might avoicl rising a big
chiink of system RAAf for btiffer space by
iising this seconcl page of virlvo mi mi!ry
to save thc screen. The problem is that
when I move thc contents of thv screen
memory from the beginning of each video
plane to thv top half of the vicleo plane, it
ovvrwrites the e x isting> screen starting
about 1(> lines clown. Can you tell me what
I'm cloing wrong? Here is some of the cocle
I'm using to save the scrvvn:

pages of v idvo using f>4K chips. But
unforturlately, thv way the Z-100's video
n>vn>nry is organized precludvs this possi
bility. First of all, each 80 byte sc:an line in
c ludvs 48 additional bytes at the end
whi< h arv not used. This makes thv math
faster for scrolling and address calcula
tions, since va<-h line is 128 bytes long.
You have takvn this into account in your
san>plv program by adding 48 to the Dl
and Sl rvgisters after each linc is moved.
Anothvr complication in the vidvo map
ping s< hc me is that each group of nine
scan linvs (rvprcscnting a text row) is fol
lowed by 7 non-displayed scan lines. This
n>akvs the beginning of each text row
start at an even 800h byte boundary. This
was also done to a<.commodate faster
text scrolling.

When you take this odd vide o map
ping sc:hvmv into account, you find that
the normal 25 line text screen on the Z
100 appears to take 51,200 bytes of video
RAM. This figure is arrived at by multiply
ing 1f> scan lines/text row (9 displayed, 7
non-displayvcf) hy 128 bytes/sc:an line hy
25 text l inc s. The question naturally
aris< s: "How can you adclrvss up to
51,200 bytes of memory, in a system that
may only have 32K RAM chips?" The an
swr r lies in the way the video mvmory is
mapped bvtwvc n the (PU and the CRT
Controller. This subject is way too c'ompli
cated to discuss here. Suffice it to say that
thv viclc-'o RAM mapping module allows
thv CPU to see video mi mory in a way
that is cc>nvvnivnt for scrolling, while at
the same time allowing the CRT-Control
Ir r to access thv memory in a mannvr ap
propriate to screen refreshing. For thosv
of you who want to know morc, the Z
100 Tvchnical Manual has an in depth

location for the memory access. This is
pretty deep stuff which needs to be ex
plained at length. If there is interest, I' ll
cover it morc thoroughly in a f u ture
installmc*nt of Z-100 Survival Kit.

But let's get hack to your original
prohlvm of saving the screen for a pop-up
utility. Evvii if yoii knew everything there
was to know about saving the existing
screen in the se< ond page of video mem
ory, this may not he the best way to go.
What if your memory-resident program
was poppvd-up while you are running a
program that uses intvrlac'ed video? Since
the high-resoltition screen used in inter
lace m<!de uses more video memory,
there would not bc enough room to save
the entire screen in vidvo memory. You
would also be precluded from using your
pop-up utility with programs that make
use of two pages of video memory. I'd say
the best all-around solution, especially if
you are writing your program for others to
use, would be to byte the bullet and sim
ply reserve a block of system RAM large
enough for the screen buffer.'+ '+ '+

MOV
MOV
MOV
MOV
MOV
MOV

NEXTLZNE'
MOV
CLD
REP
ADD
At>D
t>EC
JNE

Answer: I' ll give you an 'A' for effort,
hut your description of the problem, and
the code sample, indicates that there are
a lot of things you don't understand about
the Z-100 video layout.

right in assuming that 64K video RAM
chips will provide more than vnough
memory for two pages of video memory.
A simple calculation shows that 225 scan
lines of 80 bytes each only take"s 18,000
bytes of memory, so theoretically at least,
there should he enough room for three

cx, 8ci

MOVSB
S I. 4 8
D I. 4 8
DX
NKXTLINE

AX, BFMQh
DS. AX
ES, AX
SI.
DI, 88UVh
DX. 225

First of all, let me say that you arv

point to green video plane
p i»nt DS and FS t o v i d e o p l a n e

S I po>nts to f i r s t p a ge
DI points to second pape
wil l move 225 scan 1>nes

88 hytes a t a t. > me

move 88 bytes now
sk>p to n ex t s c a n 1>ne

decrement scan line count
r epeat un t i l do n e

(but barely undcrstandahlv) discussion of
this mapping scheme.

ory mapping businvss is that you can' t
simply n>ove 32K bytes from the start to
the end of each video plane. It is possible
to writv to 'page one' or 'page two' of vid
eo memory, hut it is done by changing
thv valiiv of the video address latch. In
other words, the second page of video
memory is accessed at exactly the same
n>emory address as page one, but thv val
ue of the address latch changes thv actual

Tlie vnd rvsult of all this vidro r»em

Question: I would like to learn more
about Assembly Language programming,
anil iising MS-DOS firnction calls on the Z
100. There are lots of books available that
cover this topic for PC compatibles, but
nothing for the Z-100. Any suggestions?

Answer: Any book which rovers As
sembly Language programming for the
IBM-PC will be usvful for Z-100 users, as
well. The kvy here is that both the IBM-PC
and thc Z-100 have an 8088 CPU, and
they both use the MS-DOS operating sys
tem. All of the Assembly Language in
structions, and all of the DOS functions
are identical between the IBM-PC and the
Z-100.

A good place to start is by reading Pat
Swaynv's "Getting Started with Assembly
Language" series in the last fvw issues of
this magazine. Or, if you prefer a book,
these are good tutorial introductions:
Assemhly Language Primer

for the IBM-PC 8 XT
Robert Lafore, ~' 1984 the Waite Group
Published by New American Library

Pvter Norton's Assembly Language Book
for the IBM-PC
Pvter Norton and John Socha, "' 1986
Brady (.ommunications Co.
Published by Prentice Hall Press

Even though these books say they are
for the IBM-PC and XT, almost everything
in them is also applicable to the Z-100.
Another valuable reference is:
The iAPX88 Book

Intel Corporation ' 1981 or later
Published for lntc'I by Reston Publishing
Company

More arlvanced books about MS
DOS and Assembly programming would

Advanced MS-DOS
hy Ray Duncan, "- 1986 Ray Duncan

include:

May 1990

Published by Microsoft Press
MS-DOS Developer's Guide

John Angermeyer and Kevin Jaeger, ~
1986 the Waite Croup
Published by Howard W. Sams 8
Company

Tricks of the MS-DOS Masters
John Angermeyer, Rich Fahringer, Kevin
Jaeger, and Dan Shafer
~ 1987 the Waite Croup, Published by
Howard W. Sams 8 Company

MS-DOS Papers
Waite Group," 1988 the Waite Group
Published by Howard W. Sams 8
Company

Memory Resident Utilities, Interrupts,
and Disk Management with MS-DOS
Michael Hyman, -' 1986 Michael I.
Hyman
Published by Management Information
Source, Inc.

There will be portions in these, and
other books, which will not be applicable
to the Z-100. Many authors also include a
discussion of how to access the IBM-PC
BIOS routines from Assembly Language.
This type of info won't do you any good
because the Z-100 has BIOS routines
which are different from the IBM-PC.

can be found in the Heath MS-DOS Pro
grammer's Utility Pack (sometimes re
ferred to as the PUP). If there is any book
that can legitimately lay claim to being the
Z-100 programmer's bible, this is it. Any
serious Z-100 programmer MUST have
this reference guide.

Information about the Z-100's BIOS

DOS FONT program to load the new font.
Or your program can load the font itself.
In order to create and load your own font,
you' ll need to know the exact layout of
the font table. This is shown in the source
listing for the MTR-100 ROM (which is in
cluded with the Z-100 Technical Manual
set). To find the start address of the font
table in memory, follow this procedure:
1. Find the start address of the MTR-100

data segment. This is stored as a doub
le-word pointer at address 0:3FCh in
the interrupt table.

2. The double-word pointer to the start
of the font table is at offset 6Fh in the
MTR-100 data segment.

X % '+
Question: There are beginning to be a

lot of cheap 8 inch drives available. Which
ones will work with the Z-100?

say for sure is that the 8 i nch d r ive
interface of the Z-207 floppy controller is
designed for use with a standard 50 pin
Shugart compatible (SA801 or SA851)
drive. I expect that other drive manufac
turers could tell you if their drive meets
this specification. The controller and BIOS
software will support single- or double
s ided drives. Be careful when you go
shopping, because some of the o lder
Heath drives (lovingly referred to as boat
anchors) are not double-sided, double
density, and have a limited storage capac
ity. The more recent style drives allow
1.25 megabytes of storage, and still com
mand a fair price (although that situation
will change dramatically as more people
switch to 5-1/4 and 3-1/2 inch high densi
ty drives.

Question: How do I calculate the vid
eo address for a pixel on the screen, or for
a text character on the screen?

text character at row R, column C, may be
calculated as follows:
VOS = (R " 2 0 4 8) + C

and column indices begin with row 0, col
umn 0, and that the Z-100 is programmed
for a standard 640 x 2 2 5 r esolution
screen with 25 text lines. The VOS num
ber calculated above is the offset to the
top byte in the text character. Each text
character consists of 9 bytes of displayed
information. Each successive byte of the
character design is offset 128 bytes. This
means that the ninth (and last) byte of the
character design will be written to VOS
+1024. Keep in mind that each plane of
video memory may need to be updated
independently, depending on the fore
ground and background colors of the
font, and the status of the video control
register bits.

When the MTR-100 ROM program
writes text to the screen, it actually writes
11 bytes of information for each character
(to the green plane only). The additional

Answer: About the only thing I can

'+ '.4'.

Question: I know th at t he Z- 100
maintains a font table in system RAM
which it uses for text characters. I also
know that this table is created by copying
the table in the MTR-100 monitor ROM.
Can I replace lhe RAM version of the table
with my own character font?

Answer: Sure, that's why the font ta
ble is moved into RAM memory to begin
with. As a matter of fact, if you have an
ALTCHAR.SYS file on your boot disk, it is
already being done for you. The Z-100
version of DOS will automatically look for
a file by that name in the root directory,
and if found, that font will be copied into
memory and used for screen text. This
feature is commonly used to gain access
to the H-19 style block graphics charac
ters, but any font could be copied to
ALTCHAR.SYS for loading at boot time.

After you have booted up, the font
may be changed at any time by using the
DOS FONT program, This program will al
low you to change fonts, to redesign an
existing font, or to create an entirely new
font. The FONT program also lets you
change the keyboard mapping. See your
Z-100 MS-DOS manual for more informa
tion about this program.

If you want a program to load a spe
cial font, this is also possible. One way
would be to have your program EXEC the

May 1990

+ '+' ,x

'+ p

Answer: The video RAM offset for a

This equation assumes that the row

ever.

two bytes are not d i splayed on t he
screen. Byte number 10 is the ASCII code
for the character, and byte number 11 are
the character attributes,

pixel at coordinate X, Y may be calculated
as follows:
TR = INT(Y / 9 (
VOS = (TR " 2848) + ((Y — (TR " 9 (l

128(+ I NTIX / 8)
Add(t(onally, the b(t number of the

pixel in the byte may be calculated as:
8IT = 7 — (X — INT(X / 8 (" 8)

ard 640 X 225 screen is being used, and
that the origin for the X and Y coordinates
is 0,0 at the top left of the screen. We' re
also assuming that bits are numbered with
bit 7 as the most significant bit in the byte.

There are more efficient ways of do
ing the arithmetic for these calculations.
Typically, shift operations and modulo
arithmetic should be used instead of mul
tiply and divide instructions. But you get
the idea.

Question: The source listing for the
MTR-100 ROM, and the documentation in
the Programmer's Utility Pack, show quite
a few different variables in the ROM data
segment. I understand what many of them
do, but some are elusive. There are some
that I can't f ind referenced in the ROM
code. What are they usecl for(

MTR-100 monitor ROM data segment are
used by the ROM to hold system status
flags, address pointers, or to pass informa
tion to o ther routines. I'm sure Heath
didn't plan for any of them to be changed
by user programs, although clever pro
grammers can do tricks by playing with
them. Modifying the MTR-100 variables is
definitely not for the faint-hearted, how

Not all of the variables are used in
current versions of the MTR-100 ROM.
For instance, many of the variables in the
COLOR structure are not used. Apparent
ly, these variables are holdovers from
earlier versions, or might even have been
included in a trial version, and then never
used. Being a programmer myself, I know
that it is easy to forget to go back and re
move unneeded trash before a product is
released.

mented variables unused, but there are
many undocumented variables that are
used. Only the variables up to about off
set 300h are documented by Heath, but
the data segment is 400h bytes, almost all
of which is used for some purpose or
another. Most of the undocumented vari
ables are simply temporary storage loca
tions which are used to hold loop indices
or transient results.

Question: The Z-100 Technical Man
ual gives a procedure to c/ear the Z-700

'+ '+. '+

The video RAM offset for a single

Again, we are assuming that a stand

Answer: Most of the variables in the

Not only are some o f t h e d ocu

.35

screen by using the CLRSCRN bit of the
vicleo control port. One of the steps in
volves waiting for 76.7 mil l iseconds to
e/apse. How can this be clone/

Answer: There are two basic ways
you can delay for the right amount of
time, as described in the Technical Manu
al. You can use the timer, or you can wait
for two consecutive vertical sync pulses.
The way you cotInt the video sync: pulses
is by hooking into interrupt vector 5Ah.
This is a software interrupt generated by
the BIOS when the vertical retrace interval
begins. Your program should hook into in
terrupt 5Ah, wait for two interrupts, and
then restore the interrupt vector to i ts
original value.

The other way of forcing a delay is hy
using the system timer. It would probably
be easier to use the timer that MS-DOS
maintains, than to access the interval
timer itself. This can be done by getting
the DOS time, and then looping until 16.7
seconds have elapsed.

techniques is overkill when it comes to
clearing the screen. It is easier, and still
fast enough to simply let the 8088 CPLI
do the screen clearing by writing zeros to
all memory locations. If you are willing to
write code which allows your program to
continue executing while it waits for the
lb.7 seconds to elapse, then that's a dif
ferent story. But if you' re going to loop
and wait anyway, you might as well just
I lear the screen manually, and forget
about the CLRSCRN feature of the video
control port.

which will clear the Z-100 screen (all three
video planes) regardless of whether you
are using normal or interlaced video.

I personally think that either of these

Zenith Data Systems (referred to as '.' on
the January cover of REMark), I know that
many of the Heath/Zenith Computer8 El
ectronics Centers are shying away fron1
Z-100 repairs. I'm in a position where I re
ceive a lot of feedbar'k about this type of
thing, and I have received numerous re
ports of service heing refused for such mi
nor technicalities as the existence of an
FBE memory expansion or a CDR speed
up kit. In other words, some of the Heath/
Zenith centers are using the existence of
non-Zenith modifications as an excuse to
refuse service. This didn't use to be the
case. But it seems to depend almost en
tirely on the management at the local
store. I' ve also gotten reports of Heath
Stores charging enormous up front fees
(like $85.00) just to open the case and
look. If you have a good relationship with
the local Heath Store, and you can stand
all those Apples looking at you, then by
all means that's where you should take
your Z-100.

Another alternative, providing you or
a friend doesn't repair computers, is to try
an independent Zenith Data Systems
dealer. Again, this is a hit and miss situa
tion, and you'd better check out the local
dealer before you trust him with your
baby. Very few ZDS dealers even do any
service orl con1pelters. Don't even bother
calling the local Zenith TV shop. Some of
the ZDS dealers that have been serving
the Heath community for years would be
a good bet — you know — the ones who
have advertised in REMark over the years.
Good examples are First Capital Comput
er, Payload Computers, and Quikdata,
Inc. I'm not seIre about First Capital or
Payload, but I do know that Quikdata will
repair Z-100s, even if you didn't buy it

• gl

with your Z-100, you might be just as well
off buying another, and keeping the old
one for spare parts.

Back to
the Books
Let's face it, sooner or later
you' re gonna have to try
and read those computer
USER manuals! But, before
you do, read "POWERINC
UP". This hook was wr i t
ten especially for you in a
non-technical, easy-to-un
derstand sty l e . W ho
knows, with "POWERINC
UP", you may NEVER have
to read yoLII' UseI' s nlanLI
als again! Order HUG P/N
885-4604 today!

IN
MOV
AND
OR
OUT
MOV
MOV
MOV

MOV
CLD
REP
MOV

OUT

AL, ODBh
AH. AL
AL. Bgh
AL. 88h
BDBh. AL
CX, OE888h
ES, CX
DI. 8
CX, 8888h

STOSW
AL. AH
BDBh, AL

Here is a sample code f ragment

save sta t us

do it to it
get original video port status

g et v i deo p or t st a t u s

enable all multiple access bit.s

enable CPU access of vtdeo RAM
s o al l v i d e o p l a nes a r e w ri t t en
get green p l a ne

b egin a t s t a r t o f v i d e o p l a n e
wall c l e a r 8 8 88h words o f memory Want New 8t Interesting Software?

® i

Check Out HUG Software

+ + +

If we ignore the possibility of inter
rupts and video arbitration, this routine
will clear the screen in about 60 mi l l i
seconds, which is fast enough for me. I
mean how often do you clear the screen
in a program anyway! The routine could
he fIIrther optimized hy only c'learing the
displayed portion of the video memory,
at the expense of some additional code.

Question: ls anyone out there still
willing Io repair Z-100 computers?

good question. At the risk of offending

from them originally.
The only other alternative, and one

which is getting to be more popular as
time goes by, is to simply junk your old
Z-100, and buy another one. The going
price for used dual-floppy Z-100s seems
to be about $250. Of course, most used
models are loaded with goodies, so the
price might be higher for a particular sys
tem. And in the future, the price is going
to go through the floor as hunches of
Z-100s start coming back into the' private
sector through government auctions. Yep,
I'd say if there is anything major wrong

Answer: That's getting to be a real

May 1990

+~ tuor<
IPaul Ii =. I nkerman

3$62~I3 Amazon IDrive
New IPort IPichev. Ii=IL 3~l iC Sinai

I just Bought a Z-100.. . Now What(
This month's column is going to be a

guide for all the folks who are buying used
Z-100s for the first time. It will answer
questions which are elementary for most
of us, but which are of paramount impor
tance to someone who has never seen, or
heard of, a Z-100 computer before. The
buyer of a used Z-100 is immediately at a
disadvantage, because the machine may
not come with the proper documentation
or software. In fact, it may not even work.
I' ve been fielding about two or three calls
a week from people who just bought a
Z-100 and don't know what they' ve got,
or what to do with it.

Where Do They All Come Fromm
Many used Z-100s are purchased

from folks who are upgrading (yes, I hear
the hisses. . .) to bigger and better ma
chines. Generally, in these cases, the pur
chaser is in pretty good shape because
the machine will come with a pile of soft
ware and technical literature accumulated
by the first owner. And if there are any
difficulties, the new owner can usually ask
the seller for help.

But MOST used Z-100s being pur
chased right now are bought at an auction
or surplus outlet for a price ranging from
$50 to $250. The buyers typically think
they are getting an IBM-PC compatible
computer (aren't all computers IBM com
p atibles) and don't know what to d o
when it won't boot their borrowed copy
of PC-DOS. A large number of Z-100s are

June 1990

even DOS.

Take an Interest in New Z-100 Owners
Many of you who have read up to

this point are beginning to say that this
doesn't have anything to do with you, be
cause you already have a Z-100, and you
are not a novice. That may be true, but
you should realize that these new Z-100
owners need our help to figure out how
to use their new computers. And we need
their continued support to extend the
usefu! life of the Z-100. If a new user can' t
get his Z-100 working and doing useful
things, he will throw it away and buy a PC
clone instead. On the other hand, if we
help him discover the capabilities of the
Z-100, he will continue to use it and may
contribute to the Z-100 community in the
future. When you consider that tens of
thousands of Z-100s are owned by the
government, and will be auctioned off in
the next few years, the level of help and
support the new buyers receive may have
a drastic effect on the future of the Z-1 00.

The Typical Scenario
My company (Paul F. Herman Inc.)

has become something of a c l earing
house for Z-100 information. The Heath
Users' Group refers most of the questions
they receive about the Z-100 to us, and
Heath/Zenith is referring many of their
Z-100 technical questions to us as well

now beginning to show up at government
auctions, and are being sold to the high
est bidder — without any software — not

especially those coming from the military,
The typical caller starts out by saying

that he just bought a Z-100 (or several) for
next to nothing, and needs some infor
mation. The questions these new buyers
ask are not hard to answer, but they do
take some time to explain properly. And I
get asked the same questions over and
over, several times a week — thus the
reason for this edition of Z-100 Survival
Kit.

more commonly asked questions in this
column. And then I would like to finish by
going through a step-by-step procedure
to help you figure out if your Z-100 is op
erating properly, and to help you get your
system on line — even if you don't have
any documentation.

Is the Z-100 an IBM-PC
Compatible Computer?

In a word, no. But before you get dis
couraged, some additional explanation is
in order. When I say that the Z-100 is not
IBM-PC compatible, this is to say that it
will not run all of the software that you
can buy for a PC clone. However, both
the Z-100 and the IBM-PC use the MS
DOS operating system, and the same CPU
chip, so many programs WILL run on both
machines. These programs are generally
referred to as "Generic DOS" programs.
There are very few commercial software
programs which fall into this class, but
there are many public domain and share
ware programs that are generic DOS, and

I would like to address some ot the

successful emulation.

which will run on the Z-100.

Can the Z-100 Run IBM-PC Software?
There are several approaches to using

IBM-PC software on the Z-100. First of all,
many "PC programs" are really not IBM
PC specific, but are programs which will
run on any MS-DOS computer, including
the Z-100 (see previous question). In or
der to fall into this category, a program has
to display only text (no graphics), use only
ASCII keyboard input (text character keys
or control codes), and access peripheral
devices using MS-DOS function calls. It
will be almost impossible to tell if a pro
gram is a generic DOS program without
trying it.

hope for running them on the Z-100. The
most economical approach, and the logi
cal first alternative, is to try HUG's ZPC
software emulator program. This program
allows you to use a surprising number of
IBM-PC programs on the Z-100. Many
programs will run under ZPC without any
problem. Others may require modifica
tions, called patches, before they will per
form correctly. For this reason, the ZPC
software solution may not he a good
choice for casual users unless the applica
tion programs you need will run without
patching. ZPC may be ordered directly
from the Heath Users' Group (see phone
numbers in the front of this magazine).
The ZPC program requires at least 768K of
RAM memory (the full load) for the most

At least two companieshave devel
oped hardware solutions for the Z-100 PC
compatibility problem. Gemini Technol
ogies has a product called the Gemini
Ertsulator Board, and UCI Corporation
manufactures the UCI Easy-PC Emulator.
These hardware modifications to the Z
100 allow just about any PC compatible
program to he run on the Z-100, as long as
it uses text or CGA graphics modes. Avail
ability of these hardware emulator sys
tems may be limited — check some of
the suppliers who advertise in this maga
zine for current ordering information.

What Version of DOS
Does the Z-1 00 U se?

for the Z-100 is v3.1. But keep in mind
that this must be a version which is de
signed to work on the Z-100. You can' t
take your brother-in-law's copy of MS
DOS 3.1 and expect i t to work on the
Z-100. As far as I know, the only place in
the world that still sells DOS for the Z-100
is QuikData Inc. (a regular advertiser in
REMark). Other Zenith Data Systems deal
ers may have some copies too. Supplies
are limited, so don't delay if you need to
get a copy of DOS for your Z-100.

tions with Heath/Zenith and Microsoft to
try to make MS-DOS for the Z-100 availa

For PC-specific program~, there is still

The latest version ol DOS available

use:

connector.

ble on a continuing basis — only the fu
ture will tell if this project is successful.

What Do All of the
Rear Panel Connectors Do?

Here is a listing of each connector on
the hack panel, and a description of its

)1 — This is a female DB-25 connector
which serves as a DCE (Data Communica
tions Equipment) port. It was originally in
tended to he used as a serial printer port,
although many serial printers are more
conveniently connected to j2.
j2 — This is a male DB-25 DTE (Data Ter
minal Equipment) serial port. It may he
used for serial modems, printers, or other
devices. This port is roughly equivalent to
the COMl port on PC compatibles. Both
serial ports in the Z-100 (J1 and)2) are
similar, and differ primarily in the gender
of the connector and the pin-outs. Most
devices can be used on either port if you
have a null-modem gender changer.
J3 — A parallel printer port which uses a
female DB-25 connector. This is a stand
ard parallel output port similar to the LPTl
port on PC compatibles.
J4 — A modular phone jack which is used
as a light pen connector. Use of a light
pen with the Z-100 will require special
software which knows how to interface
directly with the light pen.
J9 — This is a female DB-9 connector
used for RGB video output to a co lor
monitor. Most CGA compatible color
RGB monitors should work okay with the
Z-100, and should come with this type

)14 — An RCA phono jack used for mo
n ochrome video output t o a mo n o
chrome monitor. This jack will be niissing
on All-In-One models, since the compos
ite monochrome monitor is built in.
/16 — If installed, this should be a 50-pin
connector for attaching a Shugart compat
ible 8-inch floppy disk drive. However, if
the Z-100 has previously been attached
to a Bernoulli Box, tape backup, or other
special equipment, J16 may be used as a
50-pin SCSI bus connector.

connectors on the back panel of t he
Z-100, hut stock machines will only have
those listed above. The existence of addi
tional DB-25 or other types of connectors
probably means that a multi-port I/O card
(Z-204) or other accessory cards are in
stalled.

has been replaced hy a ~mall slide switch,
the switch is most likely used to change
the Z-100 between 4 MHz and 7.5 MHz
operation.

Can I Add a Hard Disk to the Z-100?
Sure, no problem, There are a variety

of different ways of adding a hard disk,
and there are a number of vendors who
still provide this type of support. Check

There are knockouts for many more

If one of the rear panel knockouts

with one of the vendors who advertises in
this magazine for more information.

Can I Read and Write
PC Compatible Disks with the Z-100?

Ycs, both the Z-100 and IBM-PCs use
the standard 360K douhle-sided, double
density format. These disks are inter
changeable between machines. If you
find that you cannot read disks created in
a PC compatible machine, there are sev
eral things to check:
1. Make sure the PC compatible disk is a

standard 360K format disk. Many PC
computers (especially the ATs) use a
high density 1.2 Mb format which can
not be read by the Z-100.

2. Check your version of DOS. If you are
using MS-DOS v1 (also known as Z
DOS on the Z-100), you will not be
able to read disks created with version
2 or above of MS-DOS. This is because
version 2 and higher of MS-DOS uses 9
sectors per track, instead of the 8 sec
tor format used by Z-DOS.

3. In some cases, inability to read a
known-good diskette may he caused
hy hardware problems, such as a drive
which is not aligned properly, or a bad
controller board. If the Z-100 seems to
work just fine with its own disks, hut
refuses to read disks created on other
machines, you may have an alignment
problem.

If PC disk compatibility is a primary
concern, and you need to read high den
sity or 3.5 inch formats, software is availa
ble for the Z-100 which will allow the use
of these special floppy drives.

Getting Your Z-100 Going
Without Any Documentation

days without any documentation or user's
manual. It is easy to understand why the
new purchaser would have difficulty figur
ing everything out. The remainder of this
column is a step-hy-step guide for getting
a Z-100 up and running, with or without
documentation.

Power-Up Check
The only thing you' ll need for this

check is the Z-100 itself, and a v ideo
monitor. If you have the "Al l-In-One"
model, your monitor is built into the com
puter. If you have the "Low-Profile" mod
el, you' ll need either a composite mono
chrome monitor, or a CGA compatible
RGB color monitor. Plug composite video
monitors into jack J14. Plug RGB monitors
into connector J9, Sorry, the Z-100 won' t
work with a TV set (former Commodore
64 owners ask this question from time to
time).

need — a power cord for the Z-100. You
should have received this with the com
puter, hut the cord is removable, so it
could he missing. The power connector

Many Z-100s are heing sold these

Oh, there is one other thing you' ll

I am currently involved in negotia

June 1990

house.

on the back of the Z-100 is a standard
type used by many computers. If you
need a cable, try a local electronics parts

Now plug the Z-100 in, and turn it on.
(Can't find the switch? Just stop right here
— you probably should not be playing
with computers.)

(depending on ROM version). You should
also hear a noisy fan coming up to speed.
No Fan noise or BEEPs? This probably
means the power supply is dead — a very
expensive problem — find the guy who
sold you this thing before he disappears.
Yes, the Z-100 has a fuse, but it is consid
ered to be a non-serviceable part (no this
is not a joke, it is Heath/Zenith's way of
selling power supplies). At any rate, if the
fuse is blown, you' ve probably got other
problems, so hest to get your money
back, if possible.

then there is something wrong with the
internal electronics. Could stil l be the
power supply, but before you give up
completely, take the cover off (see below
for instructions) and try wiggling all the
sockets and connectors to see if that cor
rects the problem. Still no luck? I guess
you' re up the proverbial creek without a
paddle.

well so far.. . skip the next section.

How To Take Off The Cover
If you need to get inside the Z-100,

the cover is easy to remove, but only if
you know how. Look at the back of the
computer, and on each side you should
see metal rails sticking out. Grab these
and pull them toward the back of the ma
chine and lift the lid at the same time. You
may need to use a screwdriver or a pair of
pliers to get them moving if they' re stuck.
The lid should just lift off.

cess to quite a bit of the internal electron
ics of the machine. You still won't be able
to get at some of the boards without fur
ther disassembly, but I don't want to get
too involved here, If you have the guts
and the desire, go for it! Z-100s are easy to
take apart and put back together — just
make sure you remember which connect
ors go where.

The Hand Prompt

ter disk (hard disk) installed, may be set
for automatic booting. If this is the case,
but you would still like to follow along
with our discussion, try hitting the DELETE
key during the auto-boot sequence, and
you should be returned to the hand
prompt.)

After the BEEPs, you should be able
to see a prompt on the video monitor that
resembles a hand with a pointing finger. If
you don' t, check your video connections

You should hear one or two BEEPs

If you hear the fan, but no BEEPs,

If the Z-100 does BEEP at you, all is

After the cover is off, you' ll have ac

(Note: Some Z-100s with a Winches

again, and make sure you are using the
proper type of monitor. If you still don' t
get anything, it sounds like problems with
the video board in the computer. This
could be something simple like a con
nector which fell off in the machine, or it
might be more serious. If you want to
have a look inside, proceed at your own
risk.

If you get a video display, but it is dis
torted or out of sync, check the adjust
ments on your monitor first. If the prob
lem can't be corrected by adjusting the
monitor, you may have to fiddle with the
jumpers on the video board. Jumpers are
provided to select the vertical and hori
zontal sync polarity, and the type of RGB
synchronization. Most monitors are pretty
standard these days, so this should not
normally be a problem.

System Information

about the configuration of this Z-100.
When the hand prompt is displayed on
the screen, press the 'S' key. The comput
er should display a few lines of informa
t ion about how much memory is in
stalled, what type of v ideo memory is
used, and if the system is color or mono
chrome. It may also tell you what size
memory chips are used, and if you have
an 8087 numeric coprocessor installed.

Now, press the 'V' key. This will tell
you what version of the monitor ROM
you have. If you have a Winchester in
stalled, or plan to add one later, you
MUST have version 2.5 or later of the
monitor ROM.

list of all the valid ROM commands. You
can play with some of these if you like
won't hurt anything. The exact details of
how to use most of them will be left as an
exercise for the user. One, which may be
paK!cularly useful, is the TEST command.
If this option does not appear on your list
of commands, then you must have a real
old version of the ROM — don't worry
about it for now,

should get a second menu showing the
different tests which are available. Op
tions should include a disk read test, key
board test, memory test, and power up
test. There's no need to run these tests
right now, but make a mental note that
they are available, if needed.

Booting Up
If you' ve gotten this far, you can take

confidence that most of the computer is
functioning as it should. The only major
parts that could still cause problems are
the disk drives and controllers.

stalled in the Z-100, try just typing 'B' and
RETURN to see if the Winchester is set up
as the default boot device. If the DOS
sign-on message appears, you' re home

Now it's time to find out something

Press the HELP key. You should see a

If this option is available, try it. You

use.

must be drive A.

free — the previous owner must have left
the system software on the hard disk.

If your system does not have a Win
chester, or if the Winchester boot attempt
failed, we' ll have to boot from a floppy
d isk. Find your MS-DOS (or Z-DOS. . .
Ughhh!) distribution disk, and insert disk
$1 in floppy drive A. Drive A is usually the
one on the left (systems with full-height
drives), or the one on top (All-in-One
Z-100s, or s ystems w i t h h a l f-height
drives). If you have a Winchester Z-100,
you only have one to pick from, and it

Now try typing 'B', followed by RE
TURN. Or, if you have a Winchester sys
tem, you may have to type 'B', then 'F1',
then RETURN. The drive A access light
should come on, and the system should
boot up and display the DOS banner.

If the computer waits for a long time
and then displays "DEVICE ERROR", you
may have hardware problems with the
drive or controller board. If the computer
just hangs forever, crashes back to the
hand prompt, or does other crazy things,
you' re probably trying to boot with an im
proper version of DOS. Remember, you
must be using Z-DOS or MS-DOS for the
Z-100! If you get the message "NO SYS
TEM", this means the disk you are trying
to boot is not bootable. If you have an
unlabeled two-disk set of DOS disks, try
the other disk.
Configuration

you' re just about home free. One other
thing that will be necessary before you
can use any printers or other peripheral
devices is the DOS configuration. This is
not normally necessary with PC compati
ble computers (or is done with the MODE
command), but on the Z-100, you MUST
configure DOS for the devices you will

Find the CONFIGUR program on one
of your DOS disks. Run this program and
follow the instructions. Typically, you
would want to configure DOS to use a
parallel printer as device PRN, and maybe
a serial printer or modem as device AUX.
Before exiting the CONFIGUR program,
be sure to write the changes to DISK and
MEMORY. This is an option on the main
CONFIGUR menu. This configuration pro
cess must be done for each bootable
DOS system disk you use, including each
bootable hard disk partition.

just copying some text to the printer using
DOS. This can be done as follows:
1. At the DOS prompt, type: COPY CON

PRN... followed by a RETURN.
2. When the cursor goes to the next line,

type in some characters, like "Testing
1,2,3" and hit RETURN.

3. Enter a Control-Z character. This is
done by holding down the Ctrl key
and hitting 'Z' at the same time. Hit RE

Continued en Page 24

If you have successfully booted DOS,

To check out the configuration, try

If there is a hard disk (Winchester) in

June 1990

Continued Irem Page 9

TURN.
4 . The text yo u e n tered shoulcl be

printed on the PRN device. You can
also do this for the AUX device.

Accessing an Already
Bootable Winchester

At this point, you' re basically in busi
ness. You should now be able to use any
of thc programs that you have Ior the
Z-100. But if you have a Winchester sys
tem, and you were not able to boot onto
the Winchester, there is still work to be
done.

Try typing 'B', followed by 'F3', a co
lon (:), and then your name, followed by
RETURN. What this does is tells the com
puter that you want to boot-up ('B') from
the Winchester ('F3') onto the partition
with your name. Needless to say, it will
not find a partition with your name (un
less you' re name is something like Ms.
Dos).

You should receive a message that
says "Error — Partition Not Found. Hit RE
TURN to continue". Follow instructions,
and hit RETURN. You should now see a
list of t h e v a l id W i nchester partition
names. Try hooting to each of the parti
tions that are listed by using the proce
dure above, but use the partition name,
instead of your name. Hopefully, you will
find one that is bootable.

names, this generally means that the Win
chester needs to b e pr epared f rom
scratch. This involves running the PREP
program, and the PART program. These
utilities are included with the Heath/Zen
ith Winchester utilities, and their use is a
bit beyond the intencled scope of this
month's Z-100 Scjrvival Kit c olumn.

Accessing Winchester Partitions

booting onto the Winchester, you will
need to access it by hooting from a floppy
drive. Make sure you have gone through
the procedure described above, and v;rit
ten down the names of the partitions.

To access the Winchester partitions,
you will need a Heath/Zenith utility pro
gram that assigns drive letters to the parti
tions. The name of the assignment pro
gram will be ASSIGN if you are using Z
DOS or MS-DOS v2. The name will be
ASGNPART if you are using DOS v3.

run the assignment program using the fol
lowing syntax:
ASGNPART 8 pname d
or...
ASSIGN 0: pname d:
where:

0 = the Winchester unit number
pnanie = name of partition to assign
d: = drive letter to assign

The drive letter you assign shocild be
E, F, G, or H. After executing this com
mand, you should be able to get a direc

Boot up on your system floppy, and

If you have been unsuccessful at

tory of the Winchester partition, If not,
this generally naeans that the partition has
not been formatted, so you will need to
use the DOS FORMAT program to forn~at
the partition. Reniember to use the '/S'
FORMAT switch for any partitions you
want to be bootable.

Wrapping It Up

get your 'new' used Z-100 on line. After
getting it working, one of the next things
you should do is start a search for any
documc ntation you can find about the
Z-100. This would include the Z-100 Us
ers Manual, Z-100 Technical Manual Set,
MS-DOS reference manual, Programmer's
Utility Pack, and back issues of REMark
and SEXTANT magazines. There are lots
of other options, DIP switc.hes, and jump
ers in the Z-100 which I have not even
mentioned in this column. Many of these
will have an effect on the way the system
operates, and how useful it is for you.

Till next time. . . keep in touc h!

Are you reading

Subscribe now!
a borrowed copy of REMark?

I hope this information v,ill help you

If you don't get a l ist o f partition

24 June 1990

