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I. Introduction

The purpose of the present report is to describe in complete detail a FORTRAN code
named Program SCAT 4 written by the UCLA group in order to analyze elastic scattering
of various particles against complex nuclei by means of the diffuse surface optical model
of the nucleus.

While a number of similar programs have been prepared and used by other groups,
there have been many requests for the UCLA program because of its flexibility and the
availability of IBM 704 and 709 computers for which the program is written.

The present program still contains some undesirable features and the UCLA group is
constantly modifying it to make it more efficient and flexible. However, a “final” program
will probably never be reached and it was decided to release Program SCAT 4 without
further delay; as they develop, modifications and additions will be described in later
reports.

Other laboratories will probably add further modifications and the UCLA group will
be grateful for description of such modifications as well as for any suggestions in this
regard. Modifications and additions deemed worthwhile will be passed on to other users
of the program but while the UCLA group is willing to serve partially as a central clearing
house, the entire clerical responsibility cannot be assumed by the UCLA group.

It should also be noted that, while every effort has been made to check out the program,
the UCLA group cannot guarantee its complete correctness.

Program SCAT 4 is available on a symbolic deck and will be mailed on request. Air
mailing will require prepaid postage by requesting parties.

Potential users of program SCAT 4 may find it useful to follow these suggestions in
reading the present report:

1) If the potential user is only interested in analyses with standard potentials he may
proceed as follows:

a) Read the introduction to the mathematical description.
b) Consider the fundamental equations: (34), (35), (51), (78) through (85), (132),

(137) through (139) in chapter II.
c) Read chapter III, section A and the general flow chart.
d) Read the description of subroutines INPT4 and OUTPT4 in chapter III, sec-

tion B.
e) Read chapter IV and VII.

2) If the potential user is interested in all the features of the program, then a perusal of
the whole report is advisable. The mathematical description of chapter II is a brief
review of the theory and the basic equations are all listed there. Symbolic FORTRAN
variables are indicated in capital letters and may be looked up in the glossary making
up chapter V.

Note that the program may be used for incident neutral particle by letting ZZ ′ = 0.



II. Mathematical Description

Program SCAT 4 calculates in the center-of-mass system the differential elastic scat-
tering cross sections σ(θ), the polarization P (θ), and the total reaction cross section σR
for particles of spin 0 or 1/2 having any mass, charge and (non-relativistic) energy scat-
tered by spinless nuclei of any mass and charge for various sets of diffuse surface optical
model parameters. The incident and target particles are assumed to interact through a
two-body potential consisting of a complex nuclear potential which includes spin-orbit
interaction and whose shape can be specified by input parameters. When the incident
particle is charged, the two body potential contains, in addition, the coulomb potential
between an incident point charge and an extended, constant charge density target.

The calculations include numerical integrations of the radial Schroedinger equations
for the effective partial waves. The complex phase shifts are obtained as usual by matching
the logarithmic derivatives of the numerically obtained nuclear wave functions to that of
the coulomb (or spherical Bessel) functions. The phase shifts are then used to compute
polarizations and cross sections which may be compared to the experimental values by
means of the χ2 test.

A. General Formulation

We begin with a brief review of the basic theory relating to the scattering of spin 1/2
particles by a zero spin target1. We shall first consider the case of an uncharged incident
particle and indicate later the modifications necessary if the incident particle is charged.

The interaction is assumed to be of the form

VT = V1 + V2 ~S · ~L (1)

where V1 and V2 are complex quantities depending only on the distance r between the
incident particle and the target particle. In terms of the Pauli spin operator ~σ, the spin
operator of the incident particle, ~S, is given by

~S =
1

2
~~σ (2)

and the (relative) orbital angular momentum operator is given by

~L = ~r ×
(

~
i
~∇
)
. (3)

The Schroedinger equation is then[
−~2

2µ
~∇2 + V1(r) + V2(r) ~S · ~L

]
Ψ = EΨ (4)

1See J. Lepore, Phys. Rev. 79, 137 (1950).
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where
µ =

mimb

mi +mb
(5)

is the reduced mass, mi and mb being respectively the masses of the incident and target
particles in atomic mass units.

E =
mb

mi +mb
ELAB (6)

is the energy in the center of mass system, ELAB being the lab energy of the incident
particle in MeV.

1. Uncharged Incident Particles

The wave function corresponding to a wave incident in the positive z direction and
normalized to one incident particle per unit time per unit area is

Ψinc =
1√
v
eikzχinc (7)

where v is the relative velocity, the wave number k is given by

k =

√
2µE

~2 = 0.2195376
√
µE fermi−1 (8)

and the incident spin function is

χinc = a1/2α + a−1/2β (9)

where α and β are normalized spin eigenfunctions of Sz and a1/2, a−1/2 the corresponding
amplitudes.

The partial wave expansion corresponding to (7) is given by:

Ψinc =
1√
v

∞∑
`=0

(2`+ 1)i`j`(kr)

√
4π

2`+ 1
Y 0
` (θ, ϕ)

[
a1/2α + a−1/2β

]
(10)

where j`(kr) is the regular spherical Bessel function of order ` and the normalized spherical
harmonics are defined as

Ym` (θ, ϕ) = (−1)
m+|m|

2

√
2`+ 1

4π

√
(`− |m|)!
(`+ |m|)!

P
|m|
` (cos θ)eimϕ (11)

where P |m|` (cos θ) are the associated Legendre polynomials.
The product functions Y 0

` α and Y 0
` β which appear in (10) are simultaneous eigen-

functions of the operators ~L2, Lz, ~S2, and Sz but not of the operator ~L · ~S which appears
in the spin-orbit interaction. This may be remedied by introducing functions Y

mj

j`s which
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are simultaneous eigenfunctions of ~L2, ~S2, ~J2, and Jz and thus of ~L · ~S where ~J is the
total angular momentum,

~J = ~L+ ~S. (12)

Since s = 1/2, the possible values of j are j = `+ 1/2 and j = `− 1/2; the corresponding
eigenfunctions are given by

Y
mj

`+1/2,`,s =

√
`+mj + 1/2

2`+ 1
Y
mj−1/2
` α+

√
`−mj + 1/2

2`+ 1
Y
mj+1/2
` β, for j = `+ 1/2

Y
mj

`−1/2,`,s = −
√
`−mj + 1/2

2`+ 1
Y
mj−1/2
` α+

√
`+mj + 1/2

2`+ 1
Y
mj+1/2
` β, for j = `− 1/2

 (13)

The incident wave function may now be written as

Ψinc =

√
4π

V

∞∑
`=0

√
`+ 1 i` j`(kr)

[
a1/2 Y

1/2
`+1/2,`,1/2 + a−1/2 Y

−1/2
`+1/2,`,1/2

]
+

√
4π

V

∞∑
`=0

√
` i` j`(kr)

[
−a1/2 Y

1/2
`−1/2,`,1/2 + a−1/2 Y

−1/2
`−1/2,`,1/2

] (14)

The total wave function can be written in a form similar to (14):

Ψtotal = Ψinc + Ψscatt

=

√
4π

V

∞∑
`=0

√
`+ 1 i`

Ψ+
` (r)

kr

[
a1/2 Y

1/2
`+1/2,`,1/2 + a−1/2 Y

−1/2
`+1/2,`,1/2

]
+

√
4π

V

∞∑
`=0

√
` i`

Ψ−` (r)

kr

[
−a1/2 Y

1/2
`−1/2,`,1/2 + a−1/2 Y

−1/2
`−1/2,`,1/2

]
(15)

where Ψ+
` is the radial function associated with j = ` + 1/2 and Ψ−` is associated with

j = `− 1/2.
The terms appearing in (15) are not coupled by the spin-orbit interaction, and sub-

stitution into the Schroedinger equation (4) yields the following radial equations:

d2Ψ±`
dr2 +

{
k2 − 2µ

~2

[
V1 +

~2

2

( `
or
−`−1

)
V2

]
− `(`+ 1)

r2

}
Ψ±` = 0 (16)

where the quantity ` appears in the equation for Ψ±` and −`− 1 appears in the equation
for Ψ−` .

The radial wave function Ψ±` must reduce to that of the incident wave, kr j`(kr), when
there is no interaction and must be such that only the outgoing wave is modified by the
interaction. These conditions are satisfied by the asymptotic expression

Ψ±`
∼= kr j`(kr) + C±` [−y`(kr) + i j`(kr)] (17)



– 5 –

which reduces to

Ψ±`
∼= kr j`(kr) + C±` e

i(kr−`π/2) (18)

or equivalently

Ψ±`
∼= sin(kr − `π

2
) + C±` e

i(kr−`π/2) (19)

as may be seen by applying the asymptotic expression for the regular and irregular spher-
ical Bessel functions:

kr j`(kr)
∼= sin(kr − `π/2)

kr y`(kr)
∼= − cos(kr − `π/2).

}
(20)

On the other hand, in terms of complex phase shifts δ±` , (19) must be of the form

Ψ±`
∼= A±` sin(kr − `π/2 + δ±` ) (21)

Comparison of the coefficients of eikr and e−ikr in eqs. (21) and (19) yields

C±` =
1

2i
(e2iδ±` − 1) (22)

A±` = eiδ
±
` (23)

Substituting (18) into (15) and subtracting Ψinc as given by (14), yields for Ψscatt the
asymptotic form:

Ψscatt ∼=
1√
V

eikr

r

{
A(θ)

[
a1/2α + a−1/2β

]
+ iB(θ)

[
a−1/2e

−iϕα− a1/2e
iϕβ
]}

(24)

where

A(θ) =
1

k

∞∑
`=0

[
(`+ 1)C+

` + `C−`
]
P`(cos θ)

B(θ) = − i
k

∞∑
`=0

[
C+
` − C

−
`

]
P 1
` (cos θ)


(25)

The wave function of the scattered wave can more conveniently be expressed in terms
of ~σ and ~n, the unit vector normal to the scattering plane defined by

~n sin θ = ~k1 × ~k0 (26)

where ~k0 and ~k1 are unit vectors in the direction of propagation before and after scattering;
thus

Ψscatt ∼=
1√
V

eikr

r
[A(θ) +B(θ)~σ · ~n]χinc =

1√
V

eikr

r
f(θ)χinc (27)

where f(θ) is the operator
f(θ) = A(θ) +B(θ)~σ · ~n. (28)
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The differential elastic scattering cross section and polarization vector which are given
by

σ(θ) =
〈

[f(θ)χinc]
† [f(θ)χinc]

〉
(29)

~P (θ) =

〈
[f(θ)χinc]

† [f(θ)χinc]
〉

σ(θ)
(30)

thus become

σ(θ) = |A|2 + |B|2 + (A∗B + AB∗)~n · ~P0 (31)

~P (θ) =
(|A|2 − |B|2)~P0 +

[
A∗B + AB∗ + 2|B|2 ~P0 · ~n

]
~n+ i(A∗B − AB∗)~n× ~P0

|A|2 + |B|2 + (A∗B + AB∗)~P0 · ~n
(32)

where the incident polarization vector ~P0, is given by

~P0 =
〈
χ
†
inc ~σχinc

〉
(33)

If the incident beam is unpolarized, i.e., ~P0 = 0, the scattered beam is polarized along
the direction ~n, perpendicular to the scattering plane and

σ(θ) = |A|2 + |B|2 (34)

~P (θ) = P (θ)~n =
(A∗B + AB∗)
|A|2 + |B|2

~n (35)

Experimentally, the polarization is sometimes obtained from a double scattering ex-
periment in the same plane wherein the polarization in the first scattering is known2.
The differential elastic scattering cross section for the second scattering may then be

obtained from (31) and (35):

σ2(θ) = (|A|2 + |B|2)

[
1 +

A∗B + AB∗

|A|2 + |B|2
~n2 · ~P1

]
= (|A|2 + |B|2)(1 + ~P2 · ~P1).

(36)

Referring to Figure 1, it is clear that

~n1 = ~nr2 = −~n`2, (37)

so that the differential scattering cross sections along the r and ` beams are as follows:

σr2(θ) = (|A|2 + |B|2)(1 + P2P1)

σ`2(θ) = (|A|2 + |B|2)(1− P2P1),

}
(38)

2L. Rosen, Proceedings of the International Conference on the Nuclear Optical Model, Florida State
University, Tallahassee, 1959, pp. 72–90.
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~k0

~k1

~k`2

~kr2

θ1 θ2

θ2

×
~n`2

~nr2

~n1

` Beam

r Beam

Fig. 1

the ratio of the scattering intensities becomes

σ`2(θ)

σr2(θ)
=

1− P2P1
1 + P2P1

, (39)

and solving for P2:

P2 =
1

P1

σ`2 − σ
r
2

σ`2 + σr2
(40)

which reduces when P1 = 1 to

P2 =
σ`2 − σ

r
2

σ`2 + σr2
(41)

2. Charged Incident Particles

We next consider the case in which the incident particle has charge Ze and the target
particle has charge Z ′e. The potential V (r) must now include a term Vc(r) which describes
the coulomb interaction. For small values of r, Vc will depend on the assumed charge
distribution, while for large values of r, we must have

Vc =
ZZ ′e2

r
(r large). (42)

It is convenient to introduce the parameter η,

η =
µ ZZ ′e2

~2k
= 0.15805086ZZ ′

√
mi

ELAB
(43)

For the “incident wave” we take Ψc(r)χinc, where Ψc is the solution to the Schroedinger
equation

− ~
2µ

~∇2Ψc +
ZZ ′e2

r
Ψc = EΨc (44)

corresponding to the scattering of two point charges.
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It is well known that in that case

Ψc =
1√
V

Γ(1 + iη)e−1/2ηπ eikzF (−iη, 1, ikξ) (45)

where ξ = r − z and F is the confluent hypergeometric function.
It is important to note that Ψc includes a distorted incoming wave plus a scattered

wave due to the point charge potential, and as such is not strictly an incident wave.
The asymptotic form of Ψc is given by

Ψc
∼=

1√
V

{
ei[kz −η `n k(r−z)]

(
1− η2

ik(r − z)

)
+

1

r
fc(θ) e

i(kr−η `n 2kr)
} (46)

where

fc(θ) = − η

2k sin2 θ/2
e−iη `n(sin2 θ/2)+2i σ0 (47)

is the Rutherford scattering amplitude and σ0 is given by equation (49), below, with
` = 0.

The partial wave expansion of Ψc is given by

Ψc =
1√
V

∞∑
`=0

(2`+ 1) i` eiσ`
F`(η, kr)

kr

√
4π

2`+ 1
Y 0
` (θ, ϕ) (48)

where F`(η, kr) is the regular coulomb function and σ` is the usual coulomb phase shift
given by

σ` = arg Γ(`+ 1 + iη) (49)

Comparing equation (48) with (10) we see that in equation (14) it is necessary to
replace j`(kr) by eiσ` F`(η,kr)kr ; thus, in this case,

Ψinc =

√
4π

V

∞∑
`=0

√
`+ 1 i` eiσ`

F`(η, kr)

kr

[
a1/2 Y 1

`+1/2,`,1/2/2 + a−1/2 Y
−1/2
`+1/2,`,1/2

]
(50)

+

√
4π

V

∞∑
`=0

√
` i` eiσ`

F`(η, kr)

kr

[
−a1/2 Y 1

`−1/2,`,1/2/2 + a−1/2 Y
−1/2
`−1/2,`,1/2

]

The total wave function can be written as a sum of the “incident” wave, Ψinc, plus a
“scattered” wave, Ψscatt, where Ψscatt now includes only interference terms and deviations
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from pure Rutherford scattering:

Ψtotal = Ψinc + Ψscatt

=

√
4π

V

∞∑
`=0

√
`+ 1 i` eiσ`

Ψ+
` (r)

kr

[
a1/2 Y 1

`+1/2,`,1/2/2 + a−1/2 Y
−1/2
`+1/2,`,1/2

]
(51)

+

√
4π

V

∞∑
`=0

√
` i` eiσ`

Ψ−` (r)

kr

[
−a1/2 Y 1

`−1/2,`,1/2/2 + a−1/2 Y
−1/2
`−1/2,`,1/2

]
This wave function, Ψtotal, is formally almost identical to the expression given by equa-
tion (15) and the radial wave functions Ψ±` obey an equation which is formally identical
to equation (16) except that V1(r) must now include the coulomb potential Vc(r) which
may differ from a point charge potential at close distances.

The radial wave function Ψ±` must now reduce to the “incident” wave, F`(η, kr), when
the potential becomes a coulomb point charge potential, and must be such that only the
outgoing wave is modified by the non-coulomb interaction. These conditions are satisfied
by the asymptotic expression:

Ψ±`
∼= F`(η, kr) + C±` [G`(η, kr) + iF`(η, kr)] (52)

which reduces to

Ψ±`
∼= F`(η, kr) + C±` e

i(kr−η `n 2kr−`π/2+σ`) (53)

or equivalently

Ψ±`
∼= sin(kr − η `n 2kr − `π/2 + σ`) + C±` e

i(kr−η `n 2kr−`π/2+σ`) (54)

as may be seen by introducing the asymptotic expressions for the regular and irregular
coulomb functions:

F`(η, kr)
∼= sin(kr − η `n 2kr − `π/2 + σ`)

G`(η, kr)
∼= cos(kr − η `n 2kr − `π/2 + σ`)

}
(55)

In this case, the “nuclear phase shift” δ±` is taken to be such that the asymptotic form
of Ψ±` is given by

Ψ±`
∼= A±` sin(kr − η `n 2kr − `π/2 + σ` + δ±` ) (56)

Comparison of the coefficients of ei(kr−η `n 2kr) and e−i(kr−η `n kr) in equations (54)
and (56) yields

C±` =
1

2i

[
e2i δ±` − 1

]
(57)

A±` = ei δ
±
` (58)
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Substituting (53) into (51) and making use of (46) and (50) we obtain for the asymptotic
form of the total wave function

Ψtotal ∼=
1√
V

{
ei[kz−η `n k(r−z)]

[
1− η2

ik(r − z)

]}
χinc

(59)

+
1√
V

ei(kr−η `n 2kr)

r

{
A(θ)

[
a1/2α + a−1/2β

]
+ iB(θ)

[
a−1/2e

−iϕα− a1/2e
iϕβ
]}

where

A(θ) = fc(θ) +
1

k

∞∑
`=0

e2iσ`
[
(`+ 1)C+

` + `C−`
]
P`(cos θ)

B(θ) = − i
k

∞∑
`=0

e2iσ`
[
C+
` − C

−
`

]
P 1
` (cos θ)

(60)

and fc(θ) is given by equation (47).
From this point, the formulation follows through as in the case of uncharged particles.

B. Optical Model Potential

1. Diffuse Surface Optical Model with Volume Absorption and
Coulomb Spin-Orbit.

The interaction (1) is assumed to have the form

VT = VCN + VSO + VCoul + VCoul SO (61)

where the terms appearing in equation (61) are respectively the central nuclear, spin-orbit
nuclear, coulomb, and coulomb spin-orbit potentials.

We shall first consider the case for which the real and imaginary parts of the central
potential have a special common form factor (corresponding to volume absorption), and
the spin-orbit potential is of the Thomas type. This particular central potential form
factor has been used extensively and will be referred to as the standard form factor. We
shall then discuss other form factors available in the program.

(a) Central nuclear potential

VCN = (−V − iW )
1

(1 + e(r−RN )/a)
(62)

where V and W are respectively the depths of the real and imaginary part of the nuclear
potential in MeV (V and W are positive for an attractive, absorbing potential), and a
common volume absorption form factor is assumed, where

RN = RONm
1/3
b × 10−13 cm (63)

RON being the nuclear radius constant and a is the rounding parameter in 10−13 cm.
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(b) Nuclear spin-orbit potential

The nuclear spin-orbit potential is often written in the Thomas form

VSO = λ
1

2M2
p c

2

{
1

r

d

dr

[
−V

1 + e(r−RN )/a

]}
~S · ~L (64)

where Mp is the proton test mass and c the velocity of light. If λ were 1, the spin-orbit
term would be that predicted by the Dirac equation. To provide more freedom in the
model one writes

λ = 4

(
Mp

Mπ

)2 VS + iWS

V
(65)

where Mπ is the pion rest mass and VS and WS are respectively the strengths of the real
and imaginary parts of the nuclear spin-orbit potential in MeV.

It may be noted that a negative value of the real part of λ would be in accordance
with the shell model of the nucleus where a (real) negative spin-orbit term is required to
give the proper level sequence in contra-distinction to the atomic case.

(c) Coulomb potential

The coulomb potential is taken here to correspond to a constant charge density within
the nucleus extending to a distance Rc given by

Rc = Rocm
1/3
b × 10−13 cm (66)

where Roc is the coulomb radius constant; thus

VCoul = (ZZ ′e2/2Rc)(3− r2/R2
c) for r ≤ Rc

= ZZ ′e2/r for r ≥ Rc
(67)

(d) Coulomb spin-orbit potential

The coulomb spin-orbit term is assumed to have the form3

VCoul SO = (µP − 1
2)

1

M2
P c

2

[
1

r

d

dr
VCoul

]
~S · ~L (68)

where µP is the proton magnetic moment in nuclear magnetons. It may be noted that
the coulomb spin-orbit term is negligible except at very high energies.

Substituting equations (62), (64), (67), and (68) into equation (16) and transforming
to the dimensionless variable

ρ = kr (69)

3W. Heckrotte, Phys. Rev. 101, l406 (1956).
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we find{
− d2

dρ2 +
`(`+ 1)

ρ2 −
(
V + iW

E

)(
1

1 + e(ρ−ρ̄N )/ka

)
+

(
~

Mπc

)2(VS + iWS

E

)
k2
[
−1

ρ

d

dρ

(
1

1 + e(ρ−ρ̄N )/ka

)]( `
or
−`−1

)
+UCoul + UCoul SO − 1

}
Ψ±` (ρ) = 0 (70)

where

UCoul =
η

ρ̄c

(
3− ρ2

ρ̄2
c

)
for ρ ≤ ρ̄c

= 2η/ρ for ρ ≥ ρ̄c

(71)

UCoul SO = −1

2

(
~

MP c

)2
(µP − 1

2)(2η)
(
k2/ρ̄3

c

)( `
or
−`−1

)
for ρ ≤ ρ̄c

= −1

2

(
~

MP c

)2
(µP − 1

2)(2η)
(
k2/ρ3

)( `
or
−`−1

)
for ρ ≥ ρ̄c

(72)

and where

ρ̄N = kRN (73)
ρ̄c = kRc. (74)

Substituting now (
~

Mπc

)2
= 2.00× 10−26 cm2 (75)

2η k2 · 1
2

(
~

MP c

)2
∼= 2η

(
E

MP c
2

)
= 2η

E

931
(76)

µP − 1
2 = 2.7934− 0.5 = 2.2934 (77)

into equation (70) yields:

d2

dρ2
Ψ±` (ρ) =

{
−1 +

`(`+ 1)
ρ2

−
(
V + iW

E

)(
1

1 + e(ρ−ρ̄N )/ka

)
+
η

ρ̄c

(
3− ρ2

ρ̄2
c

)
+

[
2
(
VS + iWS

E

)(
k

a

)(
1
ρ

e(ρ−ρ̄N )/ka

(1 + e(ρ−ρ̄N )/ka)2

)
− 0.004926

ηE

ρ̄3
c

](
`

or
−`−1

)}
Ψ±` (ρ), for ρ ≤ ρ̄c

=
{
−1 +

`(`+ 1)
ρ2

−
(
V + iW

E

)(
1

1 + e(ρ−ρ̄N )/ka

)
+

2η
ρ

(78)

+

[
2
(
VS + iWS

E

)(
k

a

)(
1
ρ

e(ρ−ρ̄N )/ka

(1 + e(ρ−ρ̄N )/ka)2

)
− 0.004926

ηE

ρ3

](
`

or
−`−1

)}
Ψ±` (ρ), for ρ ≥ ρ̄c
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2. Nuclear Form Factors

Equation (78) may be rewritten in such a way as to display explicitly the various
nuclear form factors:

d2

dρ2 Ψ±` (ρ) =

{
−1 +

`(`+ 1)

ρ2 − V

E
fCR(ρ)− iW

E
fCI(ρ) +

η

ρ̄c

(
3− ρ2

ρ̄2
c

)
+

[
VS
E

2k

a
fSR(ρ) + i

WS

E

2k

a
fSI(ρ)− 0.004926

ηE

ρ̄3
c

]( `
or
−`−1

)}
Ψ±` (ρ), for ρ ≤ ρ̄c

=

{
−1 +

`(`+ 1)

ρ2 − V

E
fCR(ρ)− iW

E
fCI(ρ) +

2η

ρ
(79)

+

[
VS
E

2k

a
fSR(ρ) + i

WS

E

2k

a
fSI(ρ)− 0.004926

ηE

ρ3

]( `
or
−`−1

)}
Ψ±` (ρ), for ρ ≥ ρ̄c

Three basic nuclear form factors and some special modifications of them are presently
available in the program. In addition the coulomb spin-orbit term may be excluded at
will. The required form factors may be chosen by assigning the proper values to the
symbolic quantities KTRL as described on pages 33 ff.

(a) Basic Form Factors

(i) Volume absorption (KTRL(I) = 0, I = 1, 7, 8, 9, 10)

fCR(ρ) = fCI(ρ) =
1

(1 + e(ρ−ρ̄N )/ka)
(80)

fSR(ρ) = fSI(ρ) =
1

ρ

e(ρ−ρ̄N )/ka

(1 + e(ρ−ρ̄N )/ka)2
(81)

(ii) Gaussian absorption (KTRL(1) = 1)
fCR is given by (80), fSR and fSI are given by (81) and

fCI(ρ) = e−[(ρ−ρ̄G)/kb]2 (82)

where

ρ̄G = kROGm
1/3
b , (83)

ROG being the nuclear Gaussian radius constant, and b determines the Gaussian width.

(iii) Square well (KTRL(1) = 2)

fCR(ρ) = fCI(ρ) = 1 for ρ ≤ ρ̄N
(84)

= 0 for ρ ≥ ρ̄N
fSR(ρ) = fSI(ρ) = 0. (85)
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(b) Special Central Nuclear Form Factors4

(KTRL(1) = 0)
The purpose of these form factors is to allow one to modify the knee or tail of the

potential curve and produce central rises or depressions in the real and/or imaginary parts
of the central nuclear potential, as specified by proper choice of the KTRL’s.

(i) Form A (KTRL(7) = 1 for real part, KTRL(8) = 1 for imaginary part).

fCR(ρ) and/or fCI(ρ) = [1 + hA(ρ)] fnA1
(ρ) 0 < ρ ≤ ρmA

= fnA1
(ρ) ρmA ≤ ρ ≤ ρ̄N

= fnA2
(ρ) ρ̄N ≤ ρ ≤ ρmax

 (86)

(ii) Form B (KTRL(7) = 2 for real part, KTRL(8) = 2 for imaginary part).

fCR(ρ) and/or fCI(ρ) = [1 + hB(ρ)] fnB1
(ρ) 0 < ρ ≤ ρmB

= fnB1
(ρ) ρmB ≤ ρ ≤ ρ̄N

= fnB2
(ρ) ρ̄N ≤ ρ ≤ ρmax

 (87)

The presence of forms A and B allows distinct form factors in the real and imaginary
parts. The presence of A1, A2 and B1, B2 allows distinct shapes in the knee and tail of
the form factors. Letting x be either A or B, and n be either nA1, nA2, nB1, or nB2,

hx(ρ) = h0x

[
2

(
ρ

ρmx

)3
− 3

(
ρ

ρmx

)2
+ 1

]
= h0x

(
1− ρ

ρmx

)2(
1 +

ρ

ρmx

)
(88)

fn(ρ) =
1

1 + gn(ρ)
(89)

where

gn(ρ) = exp

{
1

n

( ρ̄N
ka

)[( ρ

ρ̄N

)n
− 1

]}
(90)

where h0A, h0B , nA1, nA2, nB1, nB2, ρmA , ρmB are selected constants. (The n’s are
always taken as ≥ 0.)

Note 1: If h0x is taken to be zero and nx1, nx2 are taken to be 1, forms A and B reduce
to the volume absorption form.

Note 2: The three curves defined by equations (86) and (87) join smoothly with con-
tinuous derivatives as long as ρmx is chosen less than ρ̄N .

Note 3: Positive values of h0x will produce central rises in the form factors while neg-
ative values will produce a central depression.

4J.S. Nodvik, Proceedings of the International Conference on the Nuclear Model, Florida State Uni-
versity, Tallahassee, 1959, pp. 16–23.
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Note 4: If nx1 > 1, the knee of the potential will be sharper than for the usual volume
absorption case, while 0 ≤ nx1 ≤ 1 will soften the knee of the curve.

Note 5: If nx2 > 1, this will shorten the potential tail while 0 ≤ nx2 ≤ 1 will extend
it.

Some typical shapes are presented in Figures 2, 3, and 4.

(c) Special Nuclear Spin-Orbit Form Factors (KTRL(1) = 0)

Two special nuclear spin-orbit form factors are available. They can be applied to the
real and/or imaginary parts of the nuclear spin-orbit potential. The first of these form
factors corresponds to the Thomas term applied to form A in the central nuclear potential,
while the second uses form B itself; this permits one to study the result of deviations from
the Thomas form.

(i) Derivative form factor A (KTRL(9) = 1 for real part, KTRL(1O) = 1 for imag-
inary part)

fSR(ρ) and/or fSI(ρ) = (ka)
[
−1
ρ

d

dρ
(form factor A)

]
= (ka)

[
−
(

1
ρ

dhA(ρ)
dρ

)
fnA1(ρ)− (1 + hA(ρ))

(
1
ρ

dfnA1(ρ)
dρ

)]
for 0 ≤ ρ ≤ ρma

= (ka)
[
−1
ρ

dfnA1(ρ)
dρ

]
for ρma ≤ ρ ≤ ρN

= (ka)
[
−1
ρ

dfnA2(ρ)
dρ

]
for ρ̄N ≤ ρ ≤ ρmax



(91)

where

−1

ρ

dhA(ρ)

dρ
=

6h0A
ρ2
mA

(
1− ρ

ρmA

)
(92)

−1

ρ

dfnρ

dρ
=
( ρ̄N
ka

) 1

ρ2

(
ρ

ρ̄N

)n
gn(ρ) [fn(ρ)]2 (93)

and fn(ρ) and gn(ρ) are given by equations (89) and (90).

(ii) Form factor B (KTRL(9) = 2 for real part, KTRL(10) = 2 for imaginary part)

fSR(ρ) and/or fSI(ρ) =
1

2
. [form factor B as per equation (87)] (94)

Note: If h0A is taken to be zero while nA1 and nA2 are taken to be 1, the derivative
form factor in (91) becomes identical to the usual spin-orbit form factor (81).

Some typical shapes are presented in Figures 5, 6, and 7.
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3. Final Formulation for Machine Calculation

The complex radial wave function Ψ±` (ρ) may be written as

Ψ±` (ρ) = x±` (ρ) + iy±` (ρ) (95)

and equation (79) for ~σ · ~̀ = ` or −` − 1 can now be separated into two real coupled
differential equations, and dropping the subscripts and superscripts for convenience:

d2x

dρ2 = px− qy

d2y

dρ2 = qx+ py

 (96)

where

p = UCR + USR

( `
or
−`−1

)
+
`(`+ 1)

ρ2

q = UCI + USI

( `
or
−`−1

)
 (97)

Formulas (97) are convenient for programming purposes as the U ’s are now independent
of `, indeed:

UCR = −1− V

E
fCR +

η

ρ̄c

(
3− ρ2

ρ̄2
c

)
for ρ ≤ ρ̄c

= −1− V

E
fCR +

2η

ρ
for ρ ≥ ρ̄c

 (98)

UCI = −W
E
fCI (99)

USR =
VS
E

2k

a
fSR − 0.004926

ηE

ρ̄3
c

for ρ ≤ ρ̄c

=
VS
E

2k

a
fSR − 0.004926

ηE

ρ3 for ρ ≥ ρ̄c

 (100)

USI =
WS

E

2k

a
fSI (101)

4. Numerical Integration

Equations (96) must be integrated numerically twice for each ` = 0 to `max where
`max+1 corresponds to a partial wave negligibly disturbed by the scattering.

The method chosen for numerical integration is the 3-point Runge-Kutta method: it
lends itself to easy starting, permits one to change the interval quite easily and gives
excellent accuracy with relatively large steps.
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Given xi1, yi1, ẋi1, ẏi1, at ρi, where ẋi1 ≡
(
dx
dρ

)
i,1

etc.

ẍi1 = f(xi1, yi1, ρi); ÿi1 = g(xi1, yi1, ρi) (102)

xi2 = xi1 + ẋi1
∆ρ

2
; yi2 = yi1 + ẏi1

∆ρ

2
(103)

ẍi2 = f(xi2, yi2, ρi +
∆ρ

2
); ÿi2 = g(xi2, yi2, ρi +

∆ρ

2
) (104)

xi3 = xi2 + ẍi1
(∆ρ)2

4
; yi3 = yi2 + ÿi1

(∆ρ)2

4
(105)

ẍi3 = f(xi3, yi3, ρi +
∆ρ

2
); ÿi3 = g(xi3, yi3, ρi +

∆ρ

2
) (106)

xi4 = xi2 + ẋi1
∆ρ

2
+ ẍi2

(∆ρ)2

2
; yi4 = yi2 + ẏi1

∆ρ

2
+ ÿi2

(∆ρ)2

2
(107)

ẍi4 = f(xi4, yi4, ρi + ∆ρ); ÿi4 = g(xi4, yi4, ρi + ∆ρ) (108)

and finally

xi+1,1 = xi1 + ∆xi = xi1 +
(∆ρ)2

6
(ẍi1 + ẍi2 + ẍi3) + ∆ρ ẋi1 (109)

ẋi+1,1 = ẋi1 + ∆ẋi = ẋi1 +
∆ρ

6
(ẍi1 + 2ẍi2 + 2ẍi3 + ẍi4) (110)

yi+1,1 = yi1 + ∆yi = yi1 +
(∆ρ)2

6
(ÿi1 + ÿi2 + ÿi3) + ∆ρẏi1 (111)

ẏi+1,1 = ẏi1 + ∆ẏi = ẏi1 +
∆ρ

6
(ÿi1 + 2ÿi2 + 2ÿi3 + ÿi4) (112)

The process is continued until the nuclear potential becomes negligible at which time
the wave functions and their first derivatives must be saved for later matching with those
of the coulomb function.

Starting values: If ρinitial is very small, the following starting values may be used:

x`(ρ = ρinitial) = (∆ρ1)`+1; ẋ`(ρ = ρinitial) = (`+ 1)(∆ρ1)`

y`(ρ = ρinitial) = 0; ẏ`(ρ = ρinitial) = 0

}
(113)

5. Coulomb Functions

The regular and irregular coulomb functions are given by the following asymptotic
formulas which may be used successfully for large values of ρ:

F0 ∼ sin[Re(ϕ0)]e− Im(ϕ0)

F1 ∼ sin[Re(ϕ1)]e− Im(ϕ1)

G0 ∼ cos[Re(ϕ0)]e− Im(ϕ0)

G1 ∼ cos[Re(ϕ1)]e− Im(ϕ1)


(114)
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where

ϕ0 = ρ− η `n 2ρ+ σ0 +
∞∑
k=2

ak
ρk−1

(
1

1− k

)

ϕ1 = ρ− η `n 2ρ+ σ1 −
π

2
+
∞∑
k=2

bk
ρk−1

(
1

1− k

)


(115)

and where

a1 = −η, a2 =
−η2

2
+ iη

b1 = −η, b2 = −2 + η2

2
+ i

η

2

ak = −

1

2

k−1∑
m=1

am ak−m

− ik − 1

2
ak−1


(116)

with a similar recurrence formula holding for bk

σ0 = arg Γ(1 + iη)

σ1 = σ0 + tan−1 η

}
(117)

Furthermore the quantity σ0 may be successfully approximated over the whole range of η
by the following formula:

σ0 = −η +
(η

2

)
ln(η2 + 16) +

7

2
tan−1

(η
4

)
−
[
tan−1 η + tan−1

(η
2

)
+ tan−1

(η
3

)]
(118)

− η

12(η2 + 16)

[
1 +

1

30

η2 − 48

(η2 + 16)2 +
1

105

η4 − 160η2 + 1280

(16 + η2)4

]
.

The above formulas which can of course be generalized for any value of ` are equivalent
though not formally identical to the formulas listed by Abramowitz5 and by Fröberg6.

Rather than use these formulas for obtaining F` and G` for any value of ` > 1, it is
preferable to make use of recurrence formulas.

The following upward recurrence formula is suitable for finding G`:

G`+1 =
(2`+ 1)

[
η +

`(`+1)
ρ

]
G` − (`+ 1)

[
`2 + η2]1/2G`−1

`
[
(`+ 1)2 + η2

]1/2 . (119)

5Tables of Coulomb Wave Functions, Vol. I, National Bureau of Standards, Applied Mathematics
Series 17, Washington, 1952, p. XV.

6C. E. Fröberg, Rev. Mod. Phys. 27, 399 (1955).
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A similar recurrence relation can only be used for downward recurrence on the F`’s,
otherwise results rapidly lose all significance. This may be done by means of a method
due to Stegun and Abramowitz7 and which is essentially as follows.

Let it be required to compute F` from ` = 0 to ` = `max.

(1) Let `(1) = `max + 10

(The number 10 is arbitrary but has found satisfactory from practical experience)

Let F (1)
`(1)+1

= 0 and F (1)
`(1) = 0.1. Successive values of F (1)

` can be computed from

` = 0 to ` = `(1) − 1 by means of the downward recurrence formula:

F
(1)
`−1 =

(2`+ 1)
[
η +

`(`+1)
ρ

]
F

(1)
` − `

[
(`+ 1)2 + η2]1/2 F (1)

`+1

(`+ 1)
[
`2 + η2

]1/2 . (120)

Letting the constant

α = (F
(1)
0 G1 − F

(1)
1 G0)(1 + η2)1/2 (121)

one may compute successively

F` = F
(1)
` α−1 (122)

for ` = `max + 1 to ` = 0.

(2) To verify the accuracy of the F`’s obtained above one may compute as above a new
set of functions F (2)

` starting perhaps from `(2) = `(1) + 5 (again the number 5 is

obtained from practical experience) and letting now F
(2)
`(2)+1

= 0, F (2)
`(2) = 0.1. This

yields a new set of F`’s.

(3) Comparison of the two sets of F`’s obtained in (1) and (2) above indicates the
accuracy of the computation. If this proves insufficient, let `(3) = `(2) + 5 and
starting from F

(3)
`(3)+1

= 0, F (3)
`(3) = 0.1 one may obtain a third set set of F`’s which

is to be compared with the second set.

This procedure may be continued until two successive sets of F`’s are found to agree.
The derivatives of the coulomb functions may be obtained from the formula

Y
′
` =

[
(`+1)2

ρ + η

]
Y` −

[
(`+ 1)2 + η2]1/2 Y`+1

(`+ 1)
(123)

where Y` stands for either F` or G`.

7Stegun and Abramowitz, Phys. Rev. 98, 1851 (1955).
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6. Phase Shifts

The phase shifts are obtained in the usual fashion by matching the logarithmic deriva-
tives of the coulomb functions with those of the numerically integrated functions at a
value of ρ sufficiently large so that the nuclear potential becomes negligible.

Matching the logarithmic derivative of the nuclear function Ψ` = x` + iy` with that
of its asymptotic form

F` + (G` + iF`)C`

yields
Ψ
′
`

Ψ`
=
F
′
` + (G

′
` + iF

′
`)C`

F` + (G` + iF`)C`
(124)

which lead to

C±` =
Ψ±` F

′
` −Ψ±

′
` F`

Ψ±
′

` G` −Ψ±` G
′
` + i(Ψ±

′
` F` −Ψ±` F

′
`)

(125)

the quantities C` being related to the complex phase shifts through equation (57).

7. Cross Section and Polarization

The differential elastic scattering cross section σ(θ) and the polarization P (θ) for an
unpolarized incident beam are obtained from equations (34) and (35) while the reaction
cross section may be obtained as follows.

σR =
Nabs
Ninc

(126)

where Nabs is the absorbed flux, and Ninc is the incident flux which was assumed to be 1
(see equation (7)). By definition,

Nabs = − ~
2iµ

∫ [
Ψ
†
total

∂Ψtotal
∂r

−Ψtotal
∂Ψ
†
total
∂r

]
r2
0 sin θ dθ dϕ (127)

where the integral is taken over the surface of a large sphere of radius r = r0. Substituting
equation (51) for Ψtotal into equation (127) and making use of the orthonormality of the
Y
mj

j,`,s’s and of the relation ∣∣∣a1/2

∣∣∣2 +
∣∣∣a−1/2

∣∣∣2 − 1, (128)

yields after carrying out the surface integration:

σR = Nabs =
4π

V

∞∑
`=0

(`+ 1)

{
r2
(
− ~

2iµ

)[
Ψ+∗
`

kr

∂

∂r

(
Ψ+
`

kr

)
−

Ψ+
`

kr

∂

∂r

(
Ψ+∗
`

kr

)]}
r=r0
(129)

− 4π

V

∞∑
`=0

`

{
r2
(
− ~

2iµ

)[
Ψ−∗`
kr

∂

∂r

(
Ψ−`
kr

)
−

Ψ−`
kr

∂

∂r

(
Ψ−∗`
kr

)]}
r=r0
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Now substituting the asymptotic form (52) for Ψ±` and making use of the Wronskian
relations

G`F
′
` − F`G

′
` = 1 (130)

we are led to the following:

4π
V

{
r2

(
− ~

2iµ

)[
Ψ±∗`
kr

∂

∂r

(
Ψ±`
kr

)
−

Ψ±`
kr

∂

∂r

(
Ψ±∗`
kr

)]}
r=r0

=
4π
k2

[
Im(C±` )− |C±` |

2
]
. (131)

Finally, substitution of (131) into (129) yields

σ =
4π

k2

∞∑
`=0

{
(`+ 1)

[
Im(C+

` )−
(
Im(C+

` )
)2 − (Re(C+

` )
)2]

+ `
[
Im(C−` )−

(
Im(C−` )

)2 − (Re(C−` )
)2]}

. (132)

Note: The quantities e2iσ` appearing in equation (60) may be obtained by the following
recurrence formulas:

Re(e2iσ`+1) = cos 2σ`+1 =

[
(`+ 1)2 − η2

(`+ 1)2 + η2 cos 2σ`

]
−
[

2η(`+ 1)

(`+ 1)2 + η2 sin 2σ`

]
Im(e2iσ`+1) = sin 2σ`+1 =

[
(`+ 1)2 − η2

(`+ 1)2 + η2 sin 2σ`

]
+

[
2η(`+ 1)

(`+ 1)2 + η2 cos 2σ`

] (133)

while the Legendre polynomials obey the usual relations

P0(cos θ) = 1, P1(cos θ) = cos θ

P`+1(cos θ) =
1

`+ 1
[(2`+ 1) cos θP`(cos θ)− `P`−1(cos θ)] (134)

P
(1)
` (cos θ) =

`+ 1

sin θ
[cos θP`(cos θ)− P`+1(cos θ)] . (135)

One may also compute the Rutherford scattering cross section:

σc(θ) = |fc(θ)|2 . (136)

8. Chi Square Deviation

Experimental and theoretical quantities may be compared by means of the chi square
deviation:

χ2
T = χ2

σ + χ2
P (137)

where

χ2
σ =

∑
θ

χ2
σ(θ) =

∑
θ

[
σth(θ)− σex(θ)

∆σex(θ)

]2

(138)

χ2
P =

∑
θ

χ2
P (θ) =

∑
θ

[
P th(θ)− P ex(θ)

∆P ex(θ)

]2

(139)
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where the σth(θ) and P th(θ) are the theoretically obtained cross sections and polarizations
while σex(θ), ∆σex(θ), P ex(θ), ∆P ex(θ) are respectively the experimentally given cross
sections, standard deviations in the cross sections, polarization and standard deviations
in the polarization.

It should be noted that the constants were chosen such that the differential and reaction
cross section will be obtained in units of 10−26 cm2. The polarizations are of course
dimensionless ratios.

9. Normalization

The radial wave functions Ψ±` and their derivatives obtained from numerical integra-
tion of the radial Schroedinger equation contain an arbitrary normalization factor, 1/M±` .
This factor however does not affect the cross section and polarization since these are ob-
tained from the phase shifts which in turn are obtained from ratios of logarithmic deriva-
tives (see equation (125)) wherein theM`’s cancel out. If on the other hand the normalized
radial wave functions and their derivatives are required, the normalization terms may be
obtained as follows:

The asymptotic form of Ψ±` must obey equation (52) but improper normalization
results in the fact that the calculated wave functions are actually given by

x±` (ρ) + iy±` (ρ) = M±`
{
F`(η, ρ) + C±` [G`(η, ρ) + iF`(η, ρ)]

}
(140)

Now, for ρ ≤ ρmax the nuclear potentials are negligible and equation (52) represents the
exact solution; in particular, at ρ = ρmax, we must have

x±` (ρmax) + iy±` (ρmax) = M±`
{
F`(η, ρmax) + C±` [G`(η, ρmax) + iF`(η, ρmax)]

}
(141)

whereby

M±` =
x±` (ρmax) + iy±` (ρmax)

F`(η, ρmax) + C±` [G`(η, ρmax) + iF`(η, ρmax)]
(142)

and the normalized radial wave functions and their derivatives are given by

Ψ±` (ρ) =
1

M±`

[
x±` (ρ) + iy±` (ρ)

]
dΨ±` (ρ)

dρ
=

1

M±`

[
ẋ±` (ρ) + iẏ±` (ρ)

]
 (143)

and the complete normalized wave function is given in equation (51) with Ψ±` as above
in equation (143).

Note: During the numerical integration the program may renormalize the wave func-
tions and their derivatives at any value of ρ for which overflow takes place by dividing the
functions and their derivatives by the largest of these. This is accompanied by an explicit
printout as explained in the description of subroutine RKINT. Such occasional internal
renormalization must of course be taken into account if correctly normalized functions are
required.



III. Program Description

A. General Description

1. Machine Specifications

Program SCAT 4 has been written for an IBM 704 with floating point traps or an
IBM 709, with a 32,768 words memory, no drum and a minimum of two tape units.

The program can probably be modified for a 16K memory by reducing the number
of θ’s (up to 75 allowed here) and the number of `’s (up to 50 allowed here). A large
part of the memory (7500 words) is occupied by the Legendre polynomials and this may
also be reduced by computing the polynomials as required. Furthermore, the program
contains a large number of printouts which may be abbreviated to save storage space.

2. General Program Description

The program was designed to compute cross sections, polarizations and chi square
deviations at a number of specified points in the space of the optical model parameters V,
W, A, VS, WS, and if needed BG (RO, RC and RG are kept fixed), for a given set of input
data.

The time to carry out a run for a single set of parameters depends of course upon
the maximum values of ` and ρ; for p-Cu at 10 MeV (`max = 10, ρ = 0.0625 (.0625) 0.50
(0.25) 10.0) a run takes about 45 seconds including about 15 seconds for maximum output
to tape.

The program has been written in the form of subroutines to allow easy checking and
modification. Some of these subroutines are not yet available, but some provision have
been made to include them in the future. The following subroutines written in FORTRAN
are specific (sub)routines of the program:

Main routine – MAIN4

Subroutine – CTRL4

Subroutine – INPT4 Subroutine – PGEN4

Subroutine – POT1CH Subroutine – INTCTR

Subroutine – POP1 Subroutine – RKINT

Subroutine – SIGZRO Subroutine – CSUBL

Subroutine – FSUBC Subroutine – AB

Subroutine – EXSGML Subroutine – SGSGCP

Subroutine – RHOTB Subroutine – SIGMAR

Subroutine – COULFN Subroutine – CHISQ

Subroutine – RMXINC Subroutine – OUTPT4

The following subroutines are general utility routines used by the program:

Subroutine - SKIP written in FORTRAN
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Subroutine - LEAVE written in FORTRAN

Subroutine - SPILL written in FAP

The following subroutines are used in conjunction with the Load-and-Go system in use
at WDPC (Western Data Processing Center, UCLA). The effect of using this system is
described in section III-A-3 below.

Subroutine - SAVE

Subroutine - PDUMP

Subroutine - EXIT

The program assumes the presence of the following Fortran elementary function subrou-
tines:

LOGF – (natural logarithm)
SINF – (sine)
COSF – (cosine)
EXPF – (exponential)
SQRTF – (square root)
ATANF – (arc tangent)

3. Use of the WDPC Load-and-Go System

Program SCAT 4 has been written for the Load-and-Go system in use at the WDPC,
UCLA. This only affects it as follows:

(i) Special subroutines of the load-and-go system.

Subroutine SAVE
The purpose of this subroutine is to allow the operator to interrupt the calculation

without loss. The program is normally run with Sense Switch 1 off; turning on Sense
Switch 1 will cause the program to call SAVE after completing the innermost DO loop
of subroutine CTRL4. SAVE then writes on tape the content of the core memory as well
as all other information required to continue the computation such as the contents of the
AC, MQ, index registers, etc. . . .

A restart routine will then later reload the core memory, reset all registers etc. . . , and
return right after the CALL SAVE statement. The following statements up to statement
number 66 are then required to properly position the input data tape as the latter was
probably rewound when the computation was interrupted.

To eliminate the use of subroutine SAVE, remove from subroutine CTRL4 all statements
from statement number 118 to statement number 66 inclusive.
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Subroutine PDUMP(α,β)
The purpose of this subroutine is to provide a partial core dump of all quantities

between the location of the arguments in the call statement. Subroutine PDUMP is called
by subroutine LEAVE whenever difficulties such as overflow or division by zero take place.

To eliminate subroutine PDUMP, replace in subroutine LEAVE the statement CALL
PDUMP(A,ZZ) by whatever statements will cause the required core dump.

Subroutine EXIT
This subroutine terminates the program.
To eliminate subroutine EXIT, replace statement number 151 in subroutine INPT4 by

whatever statement will be used to terminate the program.

(ii) END Statements.
The usual FORTRAN END statements do not appear in the program as the load-and-go

system provides them automatically.

(iii) Input and Output Statements.
In conjunction with the load-and-go system, the program is input from tape, while

the input data is brought in from tape 7 and all the output is to tape 6.
All these particular features can of course be easily modified to use the program either

directly or in conjunction with any other system.

4. Error Indications:

(i) Division by zero.
Every division which could conceivably have a zero divisor either because of the range

of numbers used or because of an error in the input data is followed by an IF DIVIDE CHECK.
Detection of a zero denominator is then followed by an explicit print out and a CALL LEAVE
statement which leads to the next set of input data. In order to be sure that no division
by zero remains undetected, every subroutine which contains an IF DIVIDE CHECK state-
ment also begins with an IF DIVIDE CHECK to verify that the trigger is off at the start
of the subroutine; if the divide check trigger is found on at the start, there is an explicit
printout to that effect followed by a CALL LEAVE statement.

(ii) Overflow. Underflow.
Overflow and underflow are monitored by subroutine SPILL (JSPILL, ISPILL, x, y) which

needs only be called once by MAIN4. When SPILL is called, it replaces the quantities JSPILL
and ISPILL by zeros. Thereafter, in case of overflow (underflow) the subroutine replaces
the overflowed (underflowed) quantity with x (y) and places into JSPILL (ISPILL) the
address of the command which caused overflow (underflow) to occur for the first time.
Program SCAT 4 uses x = y = 0.

Every subroutine in which computations are carried out starts by setting ISPILL and
JSPILL equal to zero to insure correct identification of possible subsequent overflow or
underflow. The subroutine then ends with a check of ISPILL and JSPILL. If either of these
is not zero, there is an explicit printout describing the overflow or underflow. Underflow
results therefore in substituting zero for the underflowed quantity, but the computation
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proceeds. Overflow on the other hand results in substituting zero for the overflowed
quantity and leads to a CALL LEAVE statement to stop the computation.

B. Detailed Descriptions of the Specific Routines of the
Program

MAIN4
The main routine which is only used at the start of the program carries out the

following steps:

1) Calls SPILL which controls overflow and underflow (see III-A-4-ii). One such call
statement is sufficient to put SPILL in permanent control for all subroutines.

2) Sets up EPS1, EPS2, EPS3, which are constants used to control the accuracy of the
Coulomb functions computations, and EPS4 which is used in subroutine POT1CH.

3) Inputs identification and program numbers.

4) Calls CTRL4.

CTRL4 (Control 4)
This subroutine controls the whole flow of the program. It was coded as a subroutine

to allow it to be called by subroutine LEAVE. It carries out the following steps:

1) Advances group identification and resets run identification numbers.

2) Call INPT4.

3) Calls POT1CH.

4) If KTRL(5) = 1, calls POP1

if KTRL(5) = 0, proceeds.

5) Calls SIGZRO, FSUBC, EXSGML.

6) Sets up five (or six) nested DO loops for varying successively V , W , a, Vs, Ws (and
b for a surface absorption potential). The following steps are always done within
the innermost DO loop:

a) If Sense Switch 1 is on, calls SAVE

if Sense Switch 1 is off, proceeds.
b) Advances run identification number.
c) Calls RHOTB, COULFN, RMXINC, PGEN4, INTCTR, CSUBL, AB, SGSGCP, SIGMAR.

d) If KTRL(2) = 0, proceeds
if KTRL(2) = 1, calls CHISQ.

e) Calls OUTPT4.

7) When all the DO loops have been completed, returns to step 1.
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INPT4 (Input 4)
1) Inputs KTRL(1); if KTRL(1) = 100, calls EXIT

if KTRL(1) 6= 100, proceeds.

2) Inputs KTRL(I), I = 2 to 13.

3) Inputs FMI, FMB, ELAB, ZZ, RC, V, W, RO, A, VS, WS, RG, BG, DV, DW, DA, DVS,
DWS, DBG, HA, PMA, FN1A, FN2A, HB, PMB, FN1B, FN2B, NVMAX, NWMAX, NAMAX,
NVSMAX, NWSMAX, NBGMAX.

4) Sets up TV = V to TBG = BG (starting values of the parameters).

5) Inputs NMAX, forms NMAXP = NMAX−1.

6) Inputs RHOIN(I), I = 1 to NMAX and DRHOIN(I), I = 1 to NMAXP.

7) Computes FMU as per equation (5)
Computes ECM as per equation (6)
Computes FKAY as per equation (8)
Computes RHOBN as per equation (73)
Computes RMA and RMB (see Glossary, under PMA, PMB)
Computes RHOBC as per equation (74)
Computes ETA as per equation (43).

8) Inputs LMAXM, forms IMAX = LMAXM + 1.

9) Sets IIN(J) = 1, J = 1 to LMAX (see description of subroutine INTCTR)

10) If KTRL(5) = 0, proceeds
if KTRL(5) 6= 0:a) inputs JMAX

b) inputs THETAD(I), I = 1 to JMAX

c) computes THETA(I), I = 1 to JMAX.

11) If KTRL(2) = 0 and/or KTRL(3) = 0, proceeds,
if KTRL(2) 6= 0 and KTRL(3) 6= 0, inputs

SGMARX(I), DSGMEX(I), POLEX(I), DPOLEX(I), I = 1 to JMAX.

12) Returns to CTRL4.

POT1CH (potential 1 check)
The purpose of this subroutine is to check whether `max is sufficiently large so that all

the partial waves sensibly affected by the potential are included and to check whether ρmax
(the point at which the coulomb functions will be matched to the nuclear wave functions)
is sufficiently large to insure that the non-coulomb part of the potential is negligible. If
`max and/or ρmax are too small, the subroutine increases them, and sets IIN(`max)= 1.
The quantities ρmax and `max may be checked or not according to the value assigned to
KTRL(13):
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KTRL(13) = 1: check both `max and ρmax
KTRL(13) = 2: check ρmax only
KTRL(13) = 3: check `max only
KTRL(13) = 4: do not check either.

ρmax and `max are checked in various ways depending upon the potential form. The
routine operates as follows:

1) The routine first calculates the maximum values of V, W, A, VS, WS, and, in the
case of a Gaussian absorption, of BG over the specified grid of these parameters.

2) If KTRL(1) = 0, standard potential (or variation thereof), the routine checks, if re-
quired, that:

a) ρmax is sufficiently large so that

(V 2 +W 2)1/2

E

1

(1 + e(ρmax−ρ̄N )/ka)
≤ ε4. (144)

If this condition is not met, ρmax is increased by the last value of ∆ρ and the
check is repeated. This is accompanied by the print out:
RHOIN(NMAX) = (value of old ρmax) + (last value of DRHOIN)
RHOIN(NMAX) IS TOO SMALL IN NUCLEAR POTENTIAL.

b) The routine also checks, if required, that `max is sufficiently large so that
√
V 2 +W 2

E

1

(1 + e(`max−ρ̄N )/ka)
≤ ε4. (145)

If this condition is not met, `max is increased by 1 and the check is repeated;
this is accompanied by the following printout:
LMAXM = (value of old LMAXM) + 1

LMAXM TOO SMALL BECAUSE OF CENTRAL POTENTIAL.
The routine then checks that `max is sufficiently large so that

2k2

√
V 2
S +W 2

S

E

1

(1 + e(`max−ρ̄N )/ka)
≤ ε4. (146)

If this condition is not met, `max is increased by 1 and the check is repeated;
this is accompanied by the following printout:
LMAXM = (value of old LMAXM) + 1

LMAXM TOO SMALL BECAUSE OF SPIN ORBIT POTENTIAL.

3) If KTRL(1) = 1, Gaussian absorption,

a) The check on ρmax is as follows:

V

E

1

(1 + e(ρmax−ρ̄N )/ka)
≤ ε4; (147)
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and

W

E
e−(ρmax−ρ̄G/kb)2

≤ ε4. (148)

If these conditions are not met ρmax is increased as before and the checks are
repeated; this is accompanied by the same printout as above.

b) The check on `max is as follows:

V

E

1

(1 + e(`max−ρ̄N )/ka)
≤ ε4; (149)

and

W

E
e−(`max−ρ̄G/kb)2

≤ ε4 (150)

and as in equation (146).
If these conditions are not met `max is increased by 1 and the checks repeated.
The prints-out are given on the previous page.

4) If KTRL(1) = 2, Square well

a) The check on ρmax is as follows

ρmax > ρ̄N (151)

b) The check on `max is as follows

`max > ρ̄N + 3. (152)

Failure to meet these conditions leads to increases in ρmax and/or `max accompanied
by the same printouts as given above, after which the checks are repeated.

The program uses EPS4 = 0.001. This quantity is specified in the MAIN4 routine.
The checks described above are based on a rough estimate of the phase shifts using a

WKB expression.
POP1

Computes P(L,J), PP(L,J), L = 1 to LMAXP, J = 1 to JMAX as per equations (134) and
(135) and returns to CTRL4.
SIGZRO (Sigma zero)

Computes SIGMA0 and SIGMA1 as per equations (117) and (118) and returns to CTRL4.
FSUBC

Computes FCR(J) and FCI(J), J = 1 to JMAX as per equation (47) and returns to CTRL4.
EXSGML (Exponential sigma `)

Computes EXSGMR(J), EXSGMI(J) for J = 1 to LMAX as per equation (133) and returns
to CTRL4.
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RHOTB (Rho tabulation)
The purpose of this subroutine is to construct a table of ρ’s and ∆ρ’s corresponding to

each step of the numerical integration. This table is formed from the arrays of RHOIN(I)
and DRHOIN(I) which are input by subroutine INPT4

Input Arrays
RHOIN(I) DRHOIN(I)
RHOIN(1) DRHOIN(1)
RHOIN(2) DRHOIN(2)

. .

. .

. .

. .
RHOIN(NMAX−1) DRHOIN(NMAX−1)
RHOIN(NMAX)

Computed Tables
RHO(I) DRHO(I)
RHO(1) DRHO(1)
RHO(2) DRHO(2)

. .

. .

. .

. .
RHO(ILAST−1) DRHO(ILAST−1)
RHO(ILAST)

ρ= RHOIN(1) (DRHOIN(1)) RHOIN(2) . . . (DRHOIN(NMAX−1)) RHOIN(NMAX)
RHO(I+1) = RHO(I) + DRHO(I)
DRHO(1) = DRHO(2) = · · · = DRHO(I) = DRHOIN(1)
up to RHO(I) = RHOIN(2), etc. . . .
RHO(1) = RHOIN(1); RHO(ILAST) = RHO(NMAX)
ILAST≥NMAX.

If RHOIN(NMAX) is given in such a way that it cannot be reached by an integral
number of DRHO(I)’s, the last interval is shortened (up to 50%) or lengthened (by no
more than 50%) so that RHO(ILAST) = RHOIN(NMAX).
COULFN (Coulomb functions)

This is the most complex subroutine of the program. It computes the regular and
irregular coulomb functions and their derivatives for L = 1 to LMAXM at ρ= RHOMAX by
means of asymptotic formulas. The main steps are as follows:

1) The a and b series appearing in equation (115) are calculated according to equa-
tions (116) and are cut off when either:

(a) The term Na (or Nb) is such that the next term exceeds in magnitude the
previous one, i.e., when

[Re(UNa + 1)]2 + [Im(UNa + 1)]2 ≥ [Re(UNa)]2 + [Im(UNa)]2 (153)

where
Uk =

ak

(k − 1)ρk−1
max

(154)

and similarly for the b series.
(b) The contributions of both the real and imaginary terms give undetectable con-

tributions to the real and imaginary parts of ϕ0 (and similarly for ϕ1). During
these computations, the value of ρmax may be increased by addition of the last
value of DRHOIN and the computation starts all over again under the following
condition:
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a) The a or b series is identically equal to zero. This is accompanied by the
printout:
SERIES IN PHI0 OR PHI1 IS ZERO, CHECK DATA, IF OK

INCREASE RHOMAX = (value of old RHOMAX) + (value of last DRHOIN)
b) Either of the two series diverges too quickly, i.e., the Na-th (or Nb-th) term

still gives a non-negligible contribution to the series obtained so far, viz.∣∣∣∣∣∣∣
[
Re(UNa)

]2
+
[
Im(UNa)

]2[
Re
(∑Na−1

k=2 Uk

)]2
+
[
Im
(∑Na−1

k=2 Uk

)]2
∣∣∣∣∣∣∣ ≥ EPS3 (155)

(EPS3 is given the value 0.00001 in the MAIN4 routine.)
This is accompanied by the printout:
IF OK A OR B SERIES DIVERGES TOO QUICKLY

INCREASE RHOMAX = (value of old RHOMAX) +(value of last DRHOIN).
c) Over 48 terms are required in either the a or b series. This is accompanied

by the printout:
INCREASE RHOMAX = (value of old RHOMAX) + (value of last DRHOIN)
A OR B SERIES CONVERGES TOO SLOWLY.

2) The quantities ϕ0, ϕ1, F0, F1, G0, G1 are formed according to equations (114) and
(115), and the Wronskian is checked for accuracy requiring that∣∣∣∣W − [1 + η2

]−1/2
∣∣∣∣ =

∣∣∣∣F0G1 − F1G0 −
[
1 + η2

]−1/2
∣∣∣∣ ≤ EPS1 (156)

(EPS1 is given the value 0.00001 in the MAIN4 routine.)

If this condition is violated ρmax is increased and the computation starts all over
again; this is accompanied by the following printout:
INCREASE RHOMAX = (old value of RHOMAX) + (last value of DRHOIN)
BAD INITIAL WRONSKIAN.

3) The regular coulomb functions are formed by downward recurrence as per equa-
tions (120) and (122) according to the accompanying description.

Agreement between successive sets of F`’s is verified by checking that∣∣∣(F (n)
` /F

(n+1)
` )− 1

∣∣∣ ≤ EPS2 (157)

(EPS2 is given the value 0.00001 in the MAIN4 routine) for ` = 0 to `max.

During this computation the value of ρmax is increased and the computation starts
all over if it turns out that `(1) > `max + 40. This is accompanied by the printout:

INCREASE RHOMAX = (old value of RHOMAX) + (last value of DRHOIN)
L TOO LARGE IN FBAR(L).
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4) The irregular coulomb functions are formed by upward recurrence as per equa-
tion (119) and the Wronskian for every ` = 0 to `max + 1 is checked for accuracy
requiring that ∣∣∣∣∣F`G`+1 − F`+1G` −

`+ 1[
(`+ 1)2 + η2

]1/2
∣∣∣∣∣ ≤ EPS1 (158)

(EPS1 is given the value 0.00001 in the MAIN4 routine.)

If this condition is violated the value of ρmax is increased and the computation starts
all over again; this is accompanied by the printout:
INCREASE RHOMAX = (old value of RHOMAX) + (last value of DRHOIN)
BAD WRONSKIAN FOR L = (value of `+ 1 for which equation (158) failed).

5) Finally the derivatives of the coulomb functions for ` = 0 to `max are formed as per
equation (123).

RMXINC (Rho max increase)
The purpose of this subroutine is to extend the table of RHO(I) and DRHO(I) by in-

crements of the last value DRHOIN until the final value of RHO(I) equals RHOMAX which
may have been increased by the subroutine COULFN.

PGEN4 (Potential generator 4)
The purpose of this subroutine is to form tables of the `-independent parts of the

potential corresponding to the RHO(I) tables and suitable for using in the numerical inte-
grations.

These include:
UCRB(I), UCIB(I), USRB(I), USIB(I) for I = 1 to ILAST and corresponding to the values

at the beginning of an interval of integration; a corresponding table of form factors is also
formed:

FFCR(I), FFCI(I), FFSR(I), FFSI(I),
and

UCRM(I), UCIM(I), USRM(I), USIM(I),
and

FFCRM(I), FFCIM(I), FFSRM(I), FFSIM(I) for I = 1 to ILAST − 1 corresponding to the
values in the middle of an interval of integration.

The original and tightest part of the subroutine corresponds to a standard form factor;
modifications have been added to permit use of a variety of form factors briefly described
earlier.

The subroutine operates as follows: The UCR−’s are calculated as per equation (98),
the UCI−’s as per equation (99), the USR−’s as per equation (100) and the USI−’s as per
equation (101), wherein:

(i) KTRL(I) = 0: Volume absorption or special nuclear form factor:
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If KTRL(7) = 0, fCR is computed as per equation (80); [FFCR]8 = fCR
= 1, fCR is computed as per equation (86); [FFCR] = fCR
= 2, fCR is computed as per equation (87); [FFCR] = fCR

If KTRL(8) = 0, fCI is computed as per equation (80); [FFCI] = fCI
= 1, fCI is computed as per equation (86); [FFCI] = fCI
= 2, fCI is computed as per equation (87); [FFCI] = fCI

If KTRL(9) = 0, fSR is computed as per equation (81); [FFSR] = fSR
= 1, fSR is computed as per equation (91); [FFSR] = fSR/ka

= 2, fSR is computed as per equation (94); [FFSR] = fSR/2

If KTRL(10) = 0, fSI is computed as per equation (81); [FFSI] = fSI
= 1, fSR is computed as per equation (91); [FFSI] = fSI/ka

= 2, fSR is computed as per equation (94); [FFSI] = fSI/2

(ii) KTRL(1) = 1: Gaussian absorption
fCR is computed as per equation (80); [FFCR] = fCR
fCI is computed as per equation (82); [FFCI] = fCI
fSR is computed as per equation (81); [FFSR] = fSR
fSI is computed as per equation (81); [FFSI] = fSI

(iii) KTRL(1) = 2: Square well
fCR is computed as per equation (84); [FFCR] = fCR
fCI is computed as per equation (84); [FFCI] = fCI
fSR and fCI are taken to be zero.

Furthermore,
If KTRL(11) = 1, USR− are computed as per equation (100) including the coulomb

spin-orbit term.
If KTRL(11) = 0, USR− are computed as per equation (100) excluding the coulomb spin-

orbit term, i.e, the second term on the right hand side. KTRL(7) to KTRL(11) can of course
be given any combination of permitted values.
INTCTR (Integration Control)

For each value of L = 1 to LMAX this subroutine carries out the following steps:

1) Sets up starting values for the numerical integration as per equation (113). The
quantities IIN(L) are not especially useful at the present time, but they have been
included in order to permit start of the numerical integration at various values of ρ
depending on ` and thus permitting considerable time saving by foreshortening the
numerical integrations. A study of this method is presently under way.

2) Calls RKINT which performs the numerical integration.

8FFCR refers to the symbolic variables FFCR(I) and FFCRM(I) appearing in the program (see glos-
sary of symbols), similarly for FFCI, FFSR, and FFSI.
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3) Stores the final values of the functions and their derivatives at the completion of
each integration.

RKINT (Runge-Kutta integration)
This is the most crucial subroutine in the program as most of the time is spent in nu-

merical integration. Special efforts have therefore been made to produce a rapid program.
The subroutine integrates numerically as per equations (102) to (112) the differential

equations (96) operating simultaneously on the two sets corresponding to ~σ · ~̀ = ` and
−`− 1.

Special provisions have been made to avoid overflow; this is accomplished by dividing
all the functions and their derivatives by the largest of these at every step (RENORM);
whenever such renormalization is carried out it is accompanied by the following printout:
RENORMALIZATION FACTOR = (value of RENORM) IN RKINT FOR CODED
L =(value of `+ 1) and RHO =(value of ρ at which renormalization took place).
CSUBL

This subroutine computes C±` as per equation (125) for ` = 0 to `max.
AB

This subroutine computes A(J) and B(J) for J = 1 to JMAX i.e., for the various angles θ
required, as per equation (60).
SQSGCP (Sigma, sigma-coulomb, polarization)

This subroutine computes σ(θ), P (θ), σc(θ), as per equations (34), (35); (136) and
finally σ(θ)/σc(θ) for the various angles required.
SIGMAR

This subroutine computes σR as per equation (132).
CHISQ (Chi Square)

This subroutine computes χ2
σ(θ), χ2

σ, χ2
P (θ), χ2

P , χ
2
T as per equations (137), (138)

and (139).

Note: The quantities ∆σex(θ) and ∆P ex(θ) are always assumed to be non-zero. Thus to
avoid including an unknown experimental quantity, the corresponding standard deviation
must be taken as very large.
OUTPT4 (Output 4)

Several output formats are available:

(1) Minimum output (KTRL(6) = 1).

(a) Basic quantities
NUMPRG
KTRL(I) for I = 1 to 13
FMI, FMB, ELAB, ZZ, V, W, A, RO, VS, WS, RC, BG, RG RHOBN, RHOBC,
RHOBNG, ECM,ETA, FKAY, FKAYA, FKAYB
and, if either KTRL(7), (8), (9), or (10) is not zero,
HA, RMA, FN1A, FN2A, PNA, HB, RMB, FN1B, FN2B, PMB,
then RHOMAX, LMAXM, NMAX, RHOIN(I) for I = 1 to NMAX,
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DRHOIN(I) for I = 1 to NMAX−1, SGMRTH
and, if KTRL(2) = 1, CHI2ST, CHI2PT, CHI2T.

(b) Basic Table
THETAD(I), SGMATH(I), SRATIO(I), POLTH(I),
and, if KTRL(2) = 1, SGMAEX(I), POLEX(I), for I = 1 to JMAX.

(2) Normal output (KTRL(6) = 0)

(a) Basic quantities
(See above)

(b) Basic Table
(See above)

(c) Form factor table (output only if KTRL(12) = 1)
RHO(I), FFCR(I), FFCI(I), FFSR(I), FFSI(I),
for I = 1 to ILAST.

(d) Fitting table (output only if KTRL(2)=1)
THETAD(I), DSGMEX(I), DPOLEX(I), CHI2S(I),
CHI2P(I), CHI2(I) for I = 1 to JMAX.

(e) L table
L, CR1(L), CI1(L), CR2(L), CI2(L) for L = 1 to LMAXM (corresponding to ` = 0
to `max).

This output is made for every run, and maybe preceded by underflow descriptions
which may be ignored, and by other comments referring to an increase in ρmax, `max,
renormalization, etc.

Every page of output is headed by the run number on the left and the page number
on the right. The number of lines per page is held to be less than 50, otherwise the
subroutine calls subroutine SKIP which starts a new page.
SKIP

This subroutine increases the page number, resets K, the line counter, and outputs
the run and page number. Note that arguments giving the number of lines, page and run
numbers are required.
LEAVE

This subroutine is called whenever a run gets into difficulty because overflow, or divi-
sion by zero occur. The subroutine calls PDUMP to give a partial core dump.

This subroutine was included so as to allow for various possible requirements upon
overflow and division by zero without having to change every command where the difficulty
might occur.



IV. Description of Input Data

All data is input from tape 7. The input data tape is prepared from IBM cards which
contain one piece of input data per card in either of the two following formats:

Floating nos.
Integers

Columns. 1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

x

11

x

12

x

13

x

14

x

15

x± 0 . ±

72

any Hollerith character
any Hollerith character︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

fractional part

Note: Any floating point format which uses 15 columns or less and is acceptable to
FORTRAN may be used in place of the above.

(1) The following identification data is input first:
NUMRUN(1) : month
NUMRUN(2) : day
NUMRUN(3) : year
NUMRUN(4) : set number (put in 0 to start with 1)
NUMRUN(5) : run number (put in 0 to start with 1)
NUMPRG : program number (we use 4).

Note: The identification which consists of the five quantities NUMRUN(I), I = 1 to 5,
is printed at the top left of every output sheet. NUMRUN(4) is advanced every time
a new set of data is input, NUMRUN(5) is advanced every time a run is made with a
new set of parameters.

(2) Then, for every set of run, i.e., for every set of input data:

(a) Controls
KTRL(1) = 0 : Standard potential (possibly with generalized form factors)

= 1 : Gaussian absorption
= 2 : Square well9

KTRL(2) = 0 : no χ2 required
= 1 : χ2 required

9The quantity A is eventually discarded but it must still be input as 1/2 to avoid overflow in the
early part of the program.
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KTRL(3) = 0 : same experimental values as in last set
= 1 : new experimental values coming10

KTRL(4) : not used in present program
KTRL(5) = 0 : same angles as in last set

= 1 : new angles coming
KTRL(6) = 0 : normal output

= 1 : minimum output
KTRL(7) = 0 : UCR – Standard form

= 1 : UCR – form A
= 2 : UCR – form B

KTRL(8) = 0 : UCI – Standard form
= 1 : UCI – form A
= 2 : UCI – form B

KTRL(9) = 0 : USR – derivative standard form
= 1 : USR – derivative form A
= 2 : USR – form B

KTRL(10)= 0 : USI – derivative standard form
= 1 : USI – derivative form A
= 2 : USI – form B

KTRL(11)= 0 : do not include coulomb spin-orbit
= 1 : do include coulomb spin-orbit

KTRL(12)= 0 : do not print out form factors
= 1 : do print out form factors

KTRL(13)= 1 : check ρmax and `max
= 2 : check ρmax only
= 3 : check `max only
= 4 : do not check ρmax nor `max.

(b) Basic data
FMI, FMB, ELAB, ZZ , RC, V, W, RO, A, VS, WS, RG, BG, DV, DW,
DA, DVS, DWS, DBG, HA, PMA, FN1A, FN2A, HB, PMB, FN1B, FN2B,
NVMAX, NWMAX, NAMAX, NVSMAX, NWSMAX, NBGMAX.

(c) Integration data
NMAX, RHOIN(I) for I = 1 to NMAX, DRHOIN(I) for I = 1 to NMAX − 1,

(d) LMAXM

(e) Angles:
if KTRL(5) = 1 input: JMAX, THETAD(I) for I = 1 to JMAX

(f) Experimental data:
10KTRL(3) = 1 also requires KTRL(2) = 1 for proper operation.
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if KTRL(2) = 1 and KTRL(3) = 1 input:
SGMAEX(I) for I = 1 to JMAX

DSGMEX(I) for I = 1 to JMAX

POLEX(I) for I = 1 to JMAX

DPOLEX(I) for I = 1 to JMAX

(3) Final card:
KTRL(l) = 100.



V. Glossary and Description of Symbolic
Variables Appearing in Common and Dimension

Statements

FORTRAN Symbol Math. Symbol Description
A a Rounding parameter appearing in stan-

dard potential, see eq. (62)
AR(I), AI(I)
I = 1 to 75

Re{ai}, Im{ai} 1) Real and imaginary parts of the
terms of the auxiliary series used to
calculate asymptotically the coulomb
functions, see eq. (116)

Re{A(θi)}, Im{A(θi)} 2) See eq. (60) for definition
BR(I), BI(I)
I = 1 to 75

Re{bi}, Im{bi}
Re{B(θi)}, Im{B(θi)}

1) Ibid, see eq. (116)
2) See eq. (60) for definition

BG b Width parameter in Gaussian absorp-
tion see eq. (82)

CHI2(I)
I = 1 to 75

χ2(θi) = χ2
σ(θi) + χ2

P (θi)

CHI2P(I)
I = 1 to 75

χ2
P (θi) See eq. (139)

CHI2PT χ2
P See eq. (139)

CHI2S(I)
I = 1 to 75

χ2
σ(θi) See eq. (138)

CHI2ST χ2
σ See eq. (138)

CHI2T χ2 = χ2
σ + χ2

P

CR1(L), CI1(L)
for L = 1 to 51

Re(C+
` ), Im(C+

` ) See eqs. (57) and (125)

CR2(L), CI2(L) Re(C−` ), Im(C−` ) See eqs. (57) and (125)
DA, DV, DW,
DVS, DWS, DBG

Amount by which A, V , W , V S, WS,
BG must be incremented for succeed-
ing runs (these increments may be in-
put as positive, zero or negative).

DPOLEX(I)
for I = 1 to 75

∆P ex(θi) Standard deviation in the experimental
polarization (must never be input as 0)

DRHO(I)
for I = 1 to 250

∆ρi Interval of numerical integration (see
description of subroutine RHOTB)

DRHOL Last interval to be used in the numeri-
cal integration
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FORTRAN Symbol Math. Symbol Description
DRHOIN(I)
I = 1 to 250

Interval of numerical integration spec-
ified by input for RHOIN(I) < ρ ≤
RHOIN(I+1) (See description of subrou-
tine RHOTB)

DSGMEX(I)
I = 1 to 75

∆σex(θi) Standard deviation in the experimen-
tal differential elastic scattering cross
section in square fermis/sterad, (must
never be input as 0)

ECM E Incident energy in center-of-mass sys-
tem (MeV)

ELAB ELAB Incident energy in laboratory system
(MeV)

EPS1, EPS2, EPS3 ε1, ε2, ε3 Error thresholds appearing in various
parts of the calculation of the coulomb
functions. See eqs. (155) to (158)

EPS4 ε4 Error threshold used in POT1CH sub-
routine, see eqs. (144) to (150)

ETA η See eq. (43)
ETA2 η2

EXSGMR(L),
EXSGMI(L)
L = 1 to 51

Re{e2iσ`}, Im{e2iσ`} See eq. (133)

F(L), L = 1 to 52 F` See eq. (114) and (122)

FBAR(L),
L = 1 to 91

F
(n)
` See eq. (120)

FCR(I), FCI(I)
I = 1 to 75

Re{fc(θi)}, Im{fc(θi)} See eq. (47)

FFCR(I),
FFCRM(I)
I = 1 to 250

fCR(ρi)

fCR(ρi + ∆ρi
2 )

Form factors for the real central part
of the potential at the beginning and
middle of an integration interval (See
eqs. (80), (84), (86), (87) and descrip-
tion of subroutine PGEN4)

FFCI(I), FFCIM(I)
I = 1 to 250

fCI(ρi)

fCR(ρi + ∆ρi
2 )

As above for the imaginary central part
of the potential (See eqs. (80), (82),
(84), (86), (87), and description of sub-
routine PGEN4)

FFSR(I),
FFSRM(I)
I = 1 to 250

fSR(ρi) fSR(ρi + ∆ρi
2 ) As above for the real spin-orbit part

of the potential (See eqs. (81), (85),
(91), (94) and description of subroutine
PGEN4)
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FORTRAN Symbol Math. Symbol Description
FFSI(I), FFSIM(I)
I = 1 to 250

fSI(ρi) fSI(ρi + ∆ρi
2 ) As above for the imaginary spin-orbit

part of the potential (See eqs. (81),
(85), (91), (94), and description of sub-
routine PGEN4)

FKAY k See eq. (8) (inverse fermis)
FKAYA ka

FKAYB kb

FMB mb Mass number of target nucleus (atomic
units)

FMI mi Mass number of incident particle
(atomic units)

FMU µ Reduced mass of incident particle
(atomic units (see eq. (5))

FN1A, FN2A nA1, nA2 See eq. (86) and following description
FN1B, FN2B nB1, nB2 See eq. (87) and following description
FF(L), L = 1 to 51 F ′` See eq. (123)
G(L), L = 1 to 52 G` See eq. (114) and (119)
GP(L), L = 1 to 51 G′` See eq. (123)
HA, HB h0A, h0B See eq. (88)
IDATA Number of sets of data to be processed

after making use of subroutine SAVE

IFIRST Initial value of I, the subscript appear-
ing in RHO(I)

ILAST Final value of I, the subscript appear-
ing in RHO(I)

IIN(L), L = 1 to 51 Originally designed to allow input of
any desired value of IFIRST for various
L’s in order to speed up the numerical
integration. In the present program the
IIN(L) are all set equal to 1 by subrou-
tine INPT4

ISPILL, JSPILL Underflow and overflow indicators used
in conjunction with subroutine SPILL

JMAX Total number of angles input
(JMAX≤75)

JMAXT Temporary storage for JMAX used after
calling subroutine SAVE
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FORTRAN Symbol Math. Symbol Description
KTRL(I)
I = 1 to 13

Controls used throughout the program
to specify the potential, input and out-
put type (see description of input data)

KTRLT(I)
I = 1 to 13

Temporary storage for KTRL(I) used af-
ter calling subroutine SAVE

L `+ 1

LMAX `max + 1

LMAXM `max
NA, NV, NW,
NVS, NWS, NBG

DO loop variables used in subroutine
CTRL4 to specify the number of times
the parameters have been incremented

NAMAX, NVMAX,
NWMAX,
NVSMAX,
NWSMAX,
NBGMAX

Total number of incrementations of the
parameters specified as input data ( ≥
1)

NINPUT DO loop variable used after calling sub-
routine SAVE in order to count the
number of sets of processed input data

NMAX Total number of input values of
RHOIN(I) specified in input

NMAXT Temporary storage for NMAX used after
calling subroutine SAVE

NMAXP = NMAX − 1

NUMPRG Program number (see description of in-
put data)

NUMRUN(I)
I = 1 to 5

Identification (see description of input
data)

POLEX(I)
I = 1 to 75

P ex(θi) Experimental value of the polarization

POLTH(I)
I = 1 to 75

P th(θi) Calculated value of the polarization See
eq. (35)

P(L,J) L = 1 to 51
J = 1 to 75

P`(θj) Legendre polynomial, see eq. (134)

PP(L,J)
L = 1 to 50
J = 1 to 75

P
(l)
` (θj) Associated Legendre polynomial, see

eq. (135)

PMA, PMB ρmA/ρ̄N and ρmB/ρ̄N These are the quantities specified by
the input as they are more convenient
than RMA and RMB.



– 49 –

FORTRAN Symbol Math. Symbol Description
RO RON Nuclear radius constant (fermis), see

eq. (63)
RC ROC Charge radius constant (fermis) see

eq. (66)
RG ROG Gaussian radius constant (fermis) see

eq. (83)
RHOBC ρ̄C Value of ρ at which the uniform charge

density ends, see eq. (74)
RHOBN ρ̄N Value of ρ at which the standard po-

tential falls to half of its initial value,
see eq. (73)

RHOBNG ρ̄G Value of ρ at which the Gaussian ab-
sorption is centered

RHOIN(I)
I = 1 to 250

Input values of ρ for which the in-
tegration interval must change from
DRHOIN(I−1) to DRHOIN(I). See de-
scription of subroutine RHOTB)

ROMAX Final value of ρ in the numerical inte-
gration

RHO(I)
I = 1 to 250

ρi Value of ρ at the i-th interval of inte-
gration, see eq. (14)

RMA, RMB ρmA , ρmB Values of ρ at which special form fac-
tors are matched to standard form fac-
tors, see eqs. (86) and (87)

SGMAC(I)
I = 1 to 75

σc(θi) See eq. (136) (square fermis/sterad)

SGMAEX(I)
I = 1 to 75

σex(θi) Experimental values of the differential
elastic scattering cross section (square
fermis/sterad)

SGMATH(I)
I = 1 to 75

σth(θ1) Calculated values of the differential
elastic scattering cross section (square
fermis/sterad), see eq. (34)

SGMRTH σR Calculated value of the reaction cross
section (square fermis) see eq. (132)

SIGMA0 σ0 See eqs. (117) and (118)
SIGMA1 σ1 See eq. (117)
SRATIO(I)
I = 1 to 75

σ(θi)/σc(θi) Ratio of calculated to Rutherford cross
section

TA, TV, TW,
TVS, TWS, TBG,

Storage for initial values input for the
parameters
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FORTRAN Symbol Math. Symbol Description
THETAD(I)
I = 1 to 75

θi Scattering angle in center-of-mass sys-
tem (degrees)

THETA(I)
I = 1 to 75

θi As above (radians)

UCRB(I), UCRM(I)
I = 1 to 250

UCR(ρi) UCR(ρi + ∆ρi
2 ) L-independent part of the real central

potential at the beginning and in the
middle of the i-th interval of integra-
tion, see eq. (98)

UCIB(I), UCIM(I)
I = 1 to 250

UCI(ρi) UCI(ρi + ∆ρi
2 ) As above for the imaginary central po-

tential, see eq. (99)
USRB(I), USRM(I)
I = 1 to 250

USR(ρi) USR(ρi + ∆ρi
2 ) As above for the real spin-orbit poten-

tial, see eq. (100)
USIB(I), USIM(I)
I = 1 to 250

USI(ρi) USI(ρi + ∆ρi
2 ) As above for the imaginary spin-orbit

potential, see eq. (101)
V V Depth of real central potential (MeV)
W W Depth of imaginary central potential

(MeV)
VS VS Real part of spin-orbit potential depth

(MeV)
WS WS Imaginary part of spin-orbit potential

depth (MeV)
XC1, XCP1 x+

` (ρ), ẋ+
` (ρ) Real part of the radial (unnormalized)

wave function and its first derivative for
the case L+ 1/2

YC1, YCP1 y+
` (ρ), ẏ+

` (ρ) As above for the imaginary part and
the case L+ 1/2

XD1, XDP1 x−` (ρ), ẋ−` (ρ) As above for the real part and the case
L− 1/2

YD1, YDP1 y−` (ρ), ẏ−` (ρ) As above for the imaginary part and
the case L− 1/2

X1(L), X1P(L)
L = 1 to 51

x+
` (ρmax), ẋ+

` (ρmax) Real part of the radial (unnormalized)
wave function and its first derivative for
the case L+1/2 at the end of a numer-
ical integration

Y1(L), Y1P(L)
L = 1 to 51

y+
` (ρmax), ẏ+

` (ρmax) As above for the imaginary part and
the case L+ 1/2

X2(L), X2P(L)
L = 1 to 51

x−` (ρmax), ẋ−` (ρmax) As above for the real part and the case
L− 1/2

Y2(L), Y2P(L)
L = 1 to 51

y−` (ρmax), ẏ−` (ρmax) As above for the imaginary part and
the case L− 1/2
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FORTRAN Symbol Math. Symbol Description
ZZ ZZ ′ Product of the atomic numbers of the

target nucleus and the incident parti-
cle.



VI. Symbolic Listing of the Program

MAIN ROUTINE − SCAT 4
COMMON A,AR,AI ,
1BR, BI ,BG,
2CHI2 ,CHI2P ,CHI2PT,CHI2S ,CHI2ST ,CHI2T ,CR1, CI1 ,CR2, CI2 ,
3DPOLEX,DSGMEX,DRHO,DRHOIN,DRHOL,DV,DW,DA,DVS,DWS,DBG,
4ECM,ELAB,EPS1 ,EPS2 ,EPS3 ,EPS4 ,ETA,ETA2,EXSGMR,EXSGMI,
5F ,FBAR,FCR, FCI ,FFCR,FFCI ,FFCRM,FFCIM,FFSR, FFSI ,FFSRM,FFSIM,
6FKAY,FMB,FMI,FMU,FN1A,FN2A,FN1B,FN2B,FP,FKAYA,FKAYB,
7G,GP,
8HA,HB,
9IDATA, IFIRST , IIN , ILAST , ISPILL
COMMON JMAX,JMAXT, JSPILL ,
1KTRL,KTRLT,
2L ,LMAX,LMAXM,
3NMAX,NMAXP,NMAXT,NINPUT,NUMRUN,NUMPRG,NVMAX,NWMAX,NAMAX,NVSMAX,
4NWSMAX,NV,NW,NA,NVS,NWS,NBGMAX,NBG,
5P,PP,POLEX,POLTH,PMA,PMB,
6RC,RO,RHO,RHOBC,RHOBN,RHOIN,RHOMAX,RMA,RMB,RG,RHOBNG,
7SGMAC,SGMAEX,SGMATH,SGMRTH,SIGMA0,SIGMA1,SRATIO,
8THETA,THETAD,TV,TW,TA,TVS,TWS,TBG,
9UCRB,UCIB,UCRM,UCIM,USRB,USIB ,USRM,USIM
COMMON V,VS,
1W,WS,
2X1 ,X2 ,X1P,X2P,XC1,XCP1,XD1,XDP1,
3Y1 ,Y2 ,Y1P,Y2P,YC1,YCP1,YD1,YDP1,
4ZZ
DIMENSION AR(75) ,AI (75 ) ,
1BR(75 ) , BI (75 ) ,
2CHI2 (75 ) ,CHI2P(75 ) ,CHI2S (75 ) ,CR1(51 ) , CI1 (51 ) ,CR2(51 ) , CI2 (51 ) ,
3DPOLEX(75) ,DSGMEX(75) ,DRHO(250) ,DRHOIN(250) ,
4EXSGMR(51) ,EXSGMI(51 ) ,
5F(52 ) ,FBAR(91) ,FCR(75 ) ,FCI (75 ) ,FFCR(250) ,FFCI(250) ,FFCRM(250) ,
6FFCIM(250) ,FFSR(250) , FFSI (250) ,FFSRM(250) ,FFSIM(250) ,FP(51 ) ,
7G(52 ) ,GP(51 ) ,
8 IIN (51 ) ,
9KTRL(13 ) ,KTRLT(13)
DIMENSION NUMRUN(5 ) ,
1P(51 , 75 ) ,PP(50 ,75 ) ,POLEX(75) ,POLTH(75) ,
2RHO(250) ,RHOIN(250) ,
3SGMAC(75) ,SGMAEX(75) ,SGMATH(75) ,SRATIO(75 ) ,
4THETA(75) ,THETAD(75) ,
5UCRB(250) ,UCIB(250) ,UCRM(250) ,UCIM(250) ,USRB(250) ,USIB(250) ,
6USRM(250) ,USIM(250) ,
7X1(51 ) ,X2(51 ) ,X1P(51 ) ,X2P(51 ) ,
8Y1(51 ) ,Y2(51 ) ,Y1P(51 ) ,Y2P(51)
CALL SPILL(JSPILL , ISPILL , 0 . , 0 . )
EPS1= 0.00001
EPS2= 0.00001
EPS3= 0.00001
EPS4=0.001
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READ INPUT TAPE 7 ,10 , (NUMRUN( I ) ) , I =1 ,5)
READ INPUT TAPE 7 ,10 ,NUMPRG

10 FORMAT( I5 )
CALL CTRL4
GO
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SUBROUTINE CTRL4
3 NUMRUN(4)=NUMRUN(4)+1

NUMRUN(5)=0
CALL INPT4
CALL POT1CH

35 IF (KTRL(5 ) ) 80 ,81 ,80
80 CALL POP1
81 CALL SIGZRO

CALL FSUBC
CALL EXSGML
DO 20 NV=1,NVMAX
IF (NV−1) 102 ,101 ,102

101 V=TV
GO TO 103

102 V=V+DV
103 DO 20 NW=1,NWMAX

IF (NW−1) 105 ,104 ,105
104 W=TW

GO TO 109
105 W=W+DW
109 DO 20 NA=1,NAMAX

IF (NA−1) 111 ,110 ,111
110 A=TA

GO TO 112
111 A=A+DA
112 DO 20 NVS=1,NVSMAX

IF (NVS−1) 114 ,113 ,114
113 VS=TVS

GO TO 115
114 VS=VS+DVS
115 DO 20 NWS=1,NWSMAX

IF (NWS−1) 117 ,116 ,117
116 WS=TWS

GO TO 118
117 WS=WS+DWS

118 DO 20 NBG=1,NBGMAX
IF (NBG−1) 120 ,119 ,120

119 BG=TBG
GO TO 121

120 BG=BG+DBG
121 IF (SENSE SWITCH 1) 26 ,27
26 REWIND 7

CALL SAVE(8 )
READ INPUT TAPE 7 ,50 , (LGAR, I =1 ,6)
IDATA= NUMRUN(4)
DO 66 NINPUT=1, IDATA
READ INPUT TAPE 7 ,50 , (KTRLT( I ) , I =1 ,13)

50 FORMAT ( I5 )
51 FORMAT (E15 . 9 )

READ INPUT TAPE 7 ,51 , (GAR, I =1 ,27)
READ INPUT TAPE 7 ,50 , (LGAR, I =1 ,6) , NMAXT
NT=2∗NMAXT−1
READ INPUT TAPE 7 ,51 , (GAR, I=1,NT)
READ INPUT TAPE 7 ,51 ,LGAR
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IF (KTRLT(5 ) ) 71 ,70 ,71
71 READ INPUT TAPE 7 ,50 , JMAXT

READ INPUT TAPE 7 ,51 , (GAR, I=1,JMAXT)
70 IF (KTRLT(2 ) ) 61 ,66 ,61
61 IF (KTRLT(3 ) ) 63 ,66 ,63
63 NT=4∗JMAXT

READ INPUT TAPE 7 ,51 , (GAR, I=1,NT)
66 CONTINUE
27 NUMRUN(5)= NUMRUN(5)+1

CALL RHOTB
CALL COULFN
CALL RMXINC
CALL PGEN4
CALL INTCTR
CALL CSUBL
CALL AB
CALL SGSGCP
CALL SIGMAR
IF (KTRL(2 ) ) 33 ,100 ,33

33 CALL CHISQ
100 CALL OUTPT4
20 CONTINUE

GO TO 3
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SUBROUTINE INPT4
IF DIVIDE CHECK 100 ,110

100 WRITE OUTPUT TAPE 6 ,101
101 FORMAT(59H DIVIDE CHECK TRIGGER FOUND ON AT START OF INPT4 SUBROUT

1INE)
CALL LEAVE
STOP

110 ISPILL=0
JSPILL=0
READ INPUT TAPE 7 ,10 ,KTRL(1)
IF (KTRL(1)−100) 150 ,151 ,151

151 CALL EXIT
STOP

150 READ INPUT TAPE 7 ,10 , (KTRL( I ) , I =2 ,13)
10 FORMAT ( I5 )

READ INPUT TAPE 7 ,12 ,FMI,FMB,ELAB,ZZ ,RC,V,W,RO,A,VS,WS,RG,BG,
1DV,DW,DA,DVS,DWS,DBG
READ INPUT TAPE 7 ,12 ,HA,PMA,FN1A,FN2A,HB,PMB,FN1B,FN2B
READ INPUT TAPE 7 ,10 ,NVMAX,NWMAX,NAMAX,NVSMAX,NWSMAX,NBGMAX

12 FORMAT (E15 . 9 )
TV= V
TW=W
TA=A
TVS=VS
TWS=WS
TBG=BG
READ INPUT TAPE 7 ,10 ,NMAX
NMAXP=NMAX−1
READ INPUT TAPE 7 ,12 , (RHOIN( I ) , I=1,NMAX) , (DRHOIN( I ) , I=1,NMAXP)
CO2=FMI+FMB
FMU=(FMI∗FMB)/CO2
ECM=ELAB∗(FMB/CO2)
FKAY= .2195376∗SQRTF(FMU∗ECM)
T=FKAY∗(FMB∗∗ . 333333333)
RHOBN= T∗RO
RHOBNG=T∗RG
RMA=PMA∗RHOBN
RMB=PMB∗RHOBN
RHOBC= T∗RC
ETA= .15805086∗ZZ∗SQRTF(FMI/ELAB)
IF DIVIDE CHECK 200 ,47

200 WRITE OUTPUT TAPE 6 ,201
201 FORMAT(43H INPUT DIVISOR WAS ZERO IN INPT4 SUBROUTINE)

CALL LEAVE
STOP

47 READ INPUT TAPE 7 ,10 ,LMAXM
LMAX=LMAXM+1
DO 147 J=1,LMAX

147 IIN (J)=1
IF (KTRL(5 ) ) 48 ,50 ,48

48 READ INPUT TAPE 7 ,10 ,JMAX
READ INPUT TAPE 7 ,12 , (THETAD( I ) , I=1,JMAX)
DO 49 I=1,JMAX

49 THETA( I )= 0.01745329252∗THETAD( I )
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50 IF (KTRL(2 ) ) 51 ,207 ,51
51 IF (KTRL(3 ) ) 53 ,207 ,53
53 READ INPUT TAPE 7 ,12 , (SGMAEX( I ) , I=1,JMAX) , (DSGMEX( I ) , I=1,JMAX) ,

1(POLEX( I ) , I=1,JMAX) , (DPOLEX( I ) , I=1,JMAX)
207 IF ( ISPILL )202 ,204 ,202
202 WRITE OUTPUT TAPE 6 ,203 , ISPILL
203 FORMAT(23H UNDERFLOW OCCURRED AT I5 ,20H IN INPT4 SUBROUTINE)

204 IF ( JSPILL )205 ,210 ,205
205 WRITE OUTPUT TAPE 6 ,206 , JSPILL
206 FORMAT(22H OVERFLOW OCCURRED AT I5 ,20H IN INPT4 SUBROUTINE)

CALL LEAVE
STOP

210 RETURN
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SUBROUTINE POT1CH
IF DIVIDE CHECK 30 ,31

30 WRITE OUTPUT TAPE 6 ,130
130 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF POT1CH SUBRO

1UTINE)
CALL LEAVE
STOP

31 ISPILL=0
JSPILL=0
IKTRL=KTRL(13)
NMAX=NMAX
NMAXP= NMAX−1
AMAX=NAMAX−1
TTA=MAX1F(A, ( (AMAX∗DA)+A) )
VMAX=NVMAX−1
TTV=MAX1F(V, ( (VMAX∗DV)+V) )
WMAX=NWMAX−1
TTW=MAX1F(W, ( (WMAX∗DW)+W))
VSWAX=NVSMAX−1
TTVS=MAX1F(VS , ( (VSMAX∗DVS)+VS) )
WSMAX=NWSMAX−1
TTWS=MAX1F(WS, ( (WSMAX∗DWS)+WS))
BGMAX=NBGMAX−1
TTBG=MAX1F(BG, ( (BGMAX∗DBG)+BG))
FKAYA=FKAY∗TTA
FKAYB=FKAY∗TTBG
T2=SQRTF(TTV∗∗2+TTW∗∗2)/ECM
T7=TTV/ECM
T8=TTW/ECM
IF DIVIDE CHECK 60 ,61

60 WRITE OUTPUT TAPE 6 ,160
160 FORMAT(26H ECM IS ZERO IN POT1CH SUB)

CALL LEAVE
STOP

61 GO TO ( 3 , 3 , 111 , 15 ) ,IKTRL
3 IF (KTRL(1)−2) 24 ,25 ,24
25 IF (RHOIN(NMAX)−RHOBN) 10 ,10 ,8
24 T1=1./(1.+EXPF( (RHOIN(NMAX)−RHOBN)/FKAYA))

IF DIVIDE CHECK 50 ,28
50 WRITE OUTPUT TAPE 6 ,150
150 FORMAT(28H FKAYA IS ZERO IN POT1CH SUB)

CALL LEAVE
STOP

28 IF (KTRL(1)−1) 40 ,41 ,40
40 T3= T2∗T1

GO TO 43
41 T3=T7∗T1
43 IF (T3−EPS4) 42 ,42 ,10
10 WRITE OUTPUT TAPE 6 ,100 , RHOIN(NMAX) ,DRHOIN(NMAXP)
100 FORMAT(13H RHOIN(NMAX)=E16 . 9 , 2H+ E16 .9 , 46H RHOIN(NMAX) IS TOO SMAL

1L IN NUCLEAR POTENTIAL)
RHOIN(NMAX)= RHOIN(NMAX)+DRHOIN(NMAXP)
GO TO 3

42 IF (KTRL(1)−1) 8 ,6 ,8
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6 T11= EXPF(−((RHOIN(NMAX)−RHOBNG)/FKAYB)∗∗2)
IF ( (T8∗T11)−EPS4) 8 ,8 ,7

7 WRITE OUTPUT TAPE 6 ,103 ,RHOIN(NMAX) ,DRHOIN(MMAXP)
103 FORMAT(13H RHOIN(NMAX)=E16 . 9 , 2H+ E16 .9 , 46H RHOIN(NMAX) IS TOO SMAL

1L IN NUCLEAR POTENTIAL)
RHOIN(NMAX)= RHOIN(NMAX)+DRHOIN(NMAXP)
GO TO 6

8 GO TO(111 ,15 ) ,IKTRL
111 FLMAX=LMAXM

IF (KTRL(1)−2) 29 ,300 ,29
300 IF (FLMAX−(RHOBN+3.)) 12 ,12 ,15
29 T4=1./(1.+EXPF( (FLMAX−RHOBN)/FKAYA))

IF (KTRL(1)−1) 33 ,32 ,33
33 T5= T2∗T4

GO TO 310
32 T5=T7∗T4
310 IF (T5−EPS4)13 ,13 ,12

12 WRITE OUTPUT TAPE 6 ,101 ,LMAXM
101 FORMAT (7H LMAXM=I5 , 3H +1,45H LMAXM TOO SMALL BECAUSE OF CENTRAL P

1OTENTIAL)
LMAX= LMAX+1
LMAXM= LMAXM+1
IIN (LMAX)=1
GO TO 111

13 IF (KTRL(1)−1) 17 ,19 ,17
19 T4=EXPF(−((FLMAX−RHOBNG)/FKAYB)∗∗2)

IF ( (T8∗T4)−EPS4) 17 ,17 ,20
20 WRITE OUTPUT TAPE 6 ,200 ,LMAXM
200 FORMAT (7H LMAXM=I5 , 3H +1,45H LMAXM TOO SMALL BECAUSE OF CENTRAL P

1OTENTIAL)
LMAX=LMAX+1
LMAXM=LMAXM+1
IIN (LMAX)=1
GO TO 19

17 T2=SQRTF(TTVS∗∗2+TTWS∗∗2)/ECM
18 FLMAX=LMAXM

T4=1./(1.+EXPF( (FLMAX−RHOBN)/FKAYA))
38 T6=2.∗T2∗T4∗(FKAYW∗∗2)

IF (T6−EPS4) 15 ,15 ,14
14 WRITE OUTPUT TAPE 6 ,102 , LMAXM
102 FORMAT (7H LMAXM=I5 , 3H +1,48H LMAXM TOO SMALL BECAUSE OF SPIN ORB

1IT POTENTIAL)
LMAX= LMAX+1
LMAXM= LMAXM+1
IIN (LMAX)=1
GO TO 18

15 IF ( ISPILL )202 ,204 ,202
202 WRITE OUTPUT TAPE 6 ,203 , ISPILL
203 FORMAT(23H UNDERFLOW OCCURRED AT I5 ,14H IN POT1CH SUB)

204 IF ( JSPILL )205 ,210 ,205
205 WRITE OUTPUT TAPE 6 ,206 , JSPILL
206 FORMAT(22H OVERFLOW OCCURRED AT I5 ,14H IN POT1CH SUB)

CALL LEAVE
STOP
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210 RETURN
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SUBROUTINE POP1
IF DIVIDE CHECK 1 ,2

1 WRITE OUTPUT TAPE 6 ,101
101 FORMAT (58H DIVIDE CHECK TRIGGER FOUND ON AT START OF POP1 SUBROUT

1INE)
CALL LEAVE
STOP

2 ISPILL=0
JSPILL=0
LMAXP=LWAX+1
DO 20 J=1,JMAX
SI2=1./SINF(THETA(J ) )
IF DIVIDE CHECK 3 ,4

3 WRITE OUTPUT TAPE 6 ,103 , J
103 FORMAT (71H DIVISOR SINF THETA IS ZERO IN FIRST DIVISION OF POP1 S

1UBROUTINE FOR J=I3 )
CALL LEAVE
STOP

4 CO=COSF(THETA(J ) )
P(1 , J )=1.0
P(2 , J)=CO
PP(1 , J )=0.0
TWOLP1=3.
FL=1.
DO 20 L=1,LMAXP
TL=FL+1.
P(L+2,J)=(TWOLP1∗CO∗P(L+1,J)−FL∗P(L , J ) )/TL
PP(L+1,J)=TL∗SI2 ∗(CO∗P(L+1,J)−P(L+2,J ) )
TWOLP1=TWOLP1+2.

20 FL=TL
IF ( ISPILL ) 30 ,31 ,30

30 WRITE OUTPUT TAPE 6 ,130 , ISPILL
130 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,19H IN POP1 SUBROUTINE)
31 IF ( JSPILL) 32 ,33 ,32
32 WRITE OUTPUT TAPE 6 ,132 , JSPILL
132 FORMAT (22H OVERFLOW OCCURRED AT I6 ,19H IN POP1 SUBROUTINE)

CALL LEAVE
STOP

33 RETURN
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SUBROUTINE SIGZRO
IF DIVIDE CHECK 5 ,6

5 WRITE OUTPUT TAPE 6 ,105
105 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF SIGZRO SUBRO

1UTINE)
CALL LEAVE
STOP

6 ISPILL = 0
JSPILL = 0
SIGMA0=−(ETA/(12 .∗ (ETA∗∗2+16. ) ) )∗ (1 .+(ETA∗∗2 −48 . )/(30 .∗ ( (ETA∗∗2+16
1 . )∗∗2) )+(ETA∗∗4−160.∗(ETA∗∗2)+1280. )/(((16 .+ETA∗∗2 )∗∗4 )∗105 . ) )
SIGMA0=SIGMA0−ETA+(ETA/2 . )∗LOGF(ETA∗∗2+16 . )+((7 ./2 . )∗ATANF(ETA/4 . )

1)−(ATANF(ETA)+ATANF(ETA/2.)+ATANF(ETA/3 . ) )
SIGMA1=SIGMA0+ATANF(ETA)

15 IF ( ISPILL ) 30 ,31 ,30
30 WRITE OUTPUT TAPE 6 ,130 , ISPILL

130 FORMAT (23H UNDERFLOW OCCURRED AT I6 ,21H IN SIGZRO SUBROUTINE)
31 IF ( JSPILL) 32 ,11 ,32
32 WRITE OUTPUT TAPE 6 ,132 , JSPILL
132 FORMAT (22H OVERFLOW OCCURRED AT I6 ,21H IN SIGZRO SUBROUTINE)

CALL LEAVE
STOP

11 RETURN
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SUBROUTINE FSUBC
IF DIVIDE CHECK 20 ,21

20 WRITE OUTPUT TAPE 6 ,120
120 FORMAT (53H DIVIDE TRIGGER FOUND ON AT START OF FSUBC SUBROUTINE)

CALL LEAVE
STOP

21 ISPILL=0
JSPILL=0
DO 10 J=1,JMAX
SN=(SINF(THETA(J )/2 . 0 ) )∗∗2
FLN=ETA∗(LOGF(SN))−2.0∗SIGMA0
FNO=ETA/(2 .0∗FKAY∗(SN) )
IF DIVIDE CHECK 22 ,23

22 WRITE OUTPUT TAPE 6 ,122 , J
122 FORMAT (23H DIVISOR IS ZERO FOR J=I3 ,20H IN FSUBC SUBROUTINE)

CALL LEAVE
STOP

23 FCR(J)=(−FNO∗COSF(FLN) )
10 FCI( J)=(FNO∗SINF(FLN) )

IF ( ISPILL ) 24 ,25 ,24
24 WRITE OUTPUT TAPE 6 ,124 , ISPILL
124 FORMAT (23H UNDERFLOW OCCURRED AT I6 ,20H IN FSUBC SUBROUTINE)
25 IF ( JSPILL) 26 ,27 ,26
26 WRITE OUTPUT TAPE 6 ,126 , JSPILL
126 FORMAT (22H OVERFLOW OCCURRED AT I6 ,20H IN FSUBC SUBROUTINE)

CALL LEAVE
STOP

27 RETURN
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SUBROUTINE EXSGML
IF DIVIDE CHECK 10 ,11

10 WRITE OUTPUT TAPE 6 ,110
110 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF EXSGML SUBRO

1UTINE)
CALL LEAVE
STOP

11 ISPILL=0
JSPILL=0

1 FL=O.
EXSGMR(1)=COSF(2 . 0∗SIGMA0)
EXSGMI(1)=SINF (2 . 0∗SIGMA0)
ETA2=ETA∗∗2
ETA2A=2.0∗ETA
DO 20 L=2,LMAX
FL=FL+1.0
TER0=FL∗∗2
TER1=TER0+ETA2
TER2=(TER0−ETA2)/TER1
TER3=(ETA2A∗FL)/TER1
IF DIVIDE CHECK 12 ,13

12 WRITE OUTPUT TAPE 6 ,112 ,L
112 FORMAT (44H DIVISOR IS ZERO IN EXSGML SUBROUTINE FOR L=I3 )

CALL LEAVE
STOP

13 EXSGMR(L)=(TER2∗EXSGMR(L−1))−(TER3∗EXSGMI(L−1))
20 EXSGMI(L)=(TER2∗EXSGMI(L−1))+(TER3∗EXSGMR(L−1))

IF ( ISPILL ) 14 ,15 ,14
14 WRITE OUTPUT TAPE 6 ,114 , ISPILL
114 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,21H IN EXSGML SUBROUTINE)
15 IF ( JSPILL) 16 ,17 ,16
16 WRITE OUTPUT TAPE 6 ,116 , JSPILL

116 FORMAT(22H OVERFLOW OCCURRED AT I6 ,21H IN EXSGML SUBROUTINE)
CALL LEAVE
STOP

17 RETURN
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SUBROUTINE RHOTB
DRHO(1)=DRHOIN(1)
RHO(1)=RHOIN(1)
N=1
I=1

20 RHO( I+1)=RHO( I )+DRHOIN(N)
IF (RHO( I+1)−RHOIN(NMAX))30 ,50 ,70

30 IF (ABSF(RHO( I+1)−RHOIN(N+1))−.5∗DRHOIN(N) ) 35 ,35 ,40
35 N=XMINOF(N+1,NMAX−1)

40 DRHO( I+1)=DRHOIN(N)
I=I+1
GO TO 20

50 ILAST=I+1
60 RHO(ILAST)=RHOIN(NMAX)

DRHO(ILAST−1)=RHO(ILAST)−RHO(ILAST−1)
RHOMAX=RHOIN(NMAX)
DRHOL=DRHOIN(NMAX−1)
IF ( ISPILL ) 80 ,81 ,80

80 WRITE OUTPUT TAPE 6 ,180 , ISPILL
180 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,21H IN RHOTB SUBROUTINE)
81 IF ( JSPILL )82 ,83 ,82
82 WRITE OUTPUT TAPE 6 ,182 , JSPILL

182 FORMAT(22H OVERFLOW OCCURRED AT I6 ,21H IN RHOTB SUBROUTINE)
CALL LEAVE
STOP

83 RETURN
70 IF ( (RHO( I+1)−RHOIN(NMAX))− .5∗DRHOIN(N))50 ,50 ,75
75 ILAST=I

GO TO 60
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SUBROUTINE COULFN
IF DIVIDE CHECK 50 ,51

50 WRITE OUTPUT TAPE 6 ,150
150 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF COULFN SUBRO

1UTINE)
CALL LEAVE
STOP

51 ISPILL=0
JSPILL=0
IKTRL=KTRL(13)
LMAX=LMAXM+1
ETA2=ETA∗∗2
SQ=SQRTF(1.+ETA2)

1 IJ = 1
AR(1)=−ETA
AI(1)=0.
AR(2)=−.5∗ETA2
AI (2)=.5∗ETA

2 SI=0.
SR=0.
PR= RHOMAX
DO 10 K=2,49
T= PR∗FLOATF(1−K)
TR=AR(K)/T
TI=AI(K)/T
IF DIVIDE CHECK 52 ,53

52 WRITE OUTPUT TAPE 6 ,152
152 FORMAT(57H DIVISOR T IS ZERO IN FIRST DIVISION OF COULFN SUBROUTIN

1E)
CALL LEAVE
STOP

53 SQN=TR∗∗2+TI∗∗2
IF (K−2) 4 ,4 ,3

3 IF (SQN−SQO) 4 ,4 ,11
4 TR=SR+TR

TI=SI+TI
IF (TR−SR) 6 ,5 ,6

5 IF (TI−SI ) 6 ,13 ,6
6 SR=TR

SI=TI
AR(K+1)=0.
AI (K+1)=0.
KP=K/2
DO 7 M=1,KP
KM=K+1−M
AR(K+1)=AR(K+1)−AR(M)∗AR(KM)+AI(W)∗AI(KM)
AI(K+1)=AI(K+1)−AI(KM)∗AR(M)−AI(M)∗AR(KM)
IF (K−2∗KP) 8 ,9 ,8
AR(K+1)=AR(K+1)−.5∗(AR(KP+1)∗∗2−AI(KP+1)∗∗2)
AI (K+1)=AI(K+1)−AR(KP+1)∗AI(KP+1)

9 FK=.5∗FLOATF(K)
AI (K+1)=AI(K+1)−FK∗AR(K)
AR(K+1)=AR(K+1)+FK∗AI(K)
PR= PR∗RHOMAX
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10 SQO=SQN
GO TO 101

11 T=SR∗∗2+SI ∗∗2
IF (T) 105 ,105 ,12

12 IF (ABSF(SQO/T)−EPS3) 13 ,13 ,106
13 GO TO (14 , 15 ) , IJ
14 PAR=RHOMAX−ETA∗LOGF(2 .∗RHOMAX)

PHI0R=PAR+SIGMA0+SR
PHI0I=SI
AR(2)=−1.+AR(2)
IJ=2
GO TO 2

15 PHI1R=PAR+SIGMA1−1.570796325+SR
PHI1I=SI

25 T1=EXPF(−PHI0I )
T2=EXPF(−PHI1I )
G(1)=T1∗COSF(PHI0R)
G(2)=T2∗COSF(PHI1R)
F1=T1∗SINF(PHI0R)
F2=T2∗SINF(PHI1R)
IF (ABSF(F1∗G(2)−F2∗G(1)−1./SQ)−EPS1) 31 ,31 ,102

31 IDEC=11
32 I=LMAX+IDEC

FBAR( I )=.1
FBAR( I+1)=0.
LIMIT=LMAXM+IDEC
FL=LMAX+11
T1=SQRTF( (FL+1.)∗∗2+ETA2)
IF ( JSPILL) 139 ,133 ,139

139 WRITE OUTPUT TAPE 6 ,1390 , JSPILL
1390 FORMAT(23H OVERFLOW2 OCCURRED AT I6 ,21H IN COULFN SUBROUTINE)

CALL LEAVE
STOP

133 DO 33 I=1,LIMIT
L=LMAX+IDEC−I
FL=L
T2=SQRTF(FL∗∗2+ETA2)
FBAR(L)=((2 .∗FL+1.)∗(ETA+FL∗(FL+1.)/RHOMAX)∗FBAR(L+l )−FL∗T1∗FBAR(L
1+2))/((FL+1.)∗T2)
IF DIVIDE CHECK 54 ,600

54 WRITE OUTPUT TAPE 6 ,154
154 FORMAT(56H DIVISOR IS ZERO IN SECOND DIVISION OF COULFN SUBROUTINE

1)
CALL LEAVE
STOP

600 IF ( JSPILL) 601 ,33 ,601
601 WRITE OUTPUT TAPE 6 ,1601 , JSPILL
1601 FORMAT(22H OVERFLOW OCCURRED AT I6 ,21H IN COULFN SUBROUTINE, 24H MU

1LTIPLY FBAR( I ) BY 0 . 1 )
K=LMAX+IDEC
FBAR(K)=FBAR(K)∗0 . 1
JSPILL=0
GO TO 133

33 T1=T2
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ALPHA=1./((FBAR(1)∗G(2)−FBAR(2)∗G(1) )∗SQ)
IF DIVIDE CHECK 55 ,43

55 WRITE OUTPUT TAPE 6 ,155
155 FORMAT (55H DIVISOR IS ZERO IN THIRD DIVISION OF COULFN SUBROUTINE

1)
CALL LEAVE
STOP

43 LMAXP=LMAX+1
DO 34 I=1,LMAXP

34 FBAR( I )=ALPHA∗FBAR( I )
IF (IDEC−11) 371 ,35 ,371

371 IF (ABSF(F1/FBAR(1)−1.)−EPS2) 37 ,37 ,35
35 DO 36 I=1,LMAXP
36 F( I )=FBAR( I )

IDEC=IDEC+5
IF (IDEC−40) 32 ,32 ,103

37 DO 38 I=1,LMAXP
IF (ABSF(F( I )/FBAR( I )−1.)−EPS2) 44 ,44 ,35

44 IF DIVIDE CHECK 56 ,38
56 WRITE OUTPUT TAPE 6 ,156 ,L , I

156 FORMAT(74H DIVISOR FBAR( I )−1. IS ZERO IN FOURTH DIVISION OF COULFN
1 SUBROUTINE FOR L=I3 , 7H AND I=I3 )
CALL LEAVE
STOP

38 CONTINUE
DO 381 I=1,MAXP

381 F( I )=FBAR( I )
382 T1=SQ

DO 40 L=1,LMAX
FL=L
T2=SQRTF( (FL+1.)∗∗2+ETA2)
G(L+2)=((2.∗FL+1.)∗(ETA+FL∗(FL+1.)/RHOWAX)∗G(L+1)−(FL+1.)∗T1∗G(L) )
1/(FL∗T2)
TS=FL/T1
IF DIVIDE CHECK 57 ,45

57 WRITE OUTPUT TAPE 6 ,157
157 FORMAT(58H DIVISOR T1 IS ZERO IN FIFTH DIVISION OF COULFN SUBROUTI

1NE)
CALL LEAVE
STOP

45 IF (ABSF(F(L)∗G(L+1)−F(L+1)∗G(L)−TS)−EPS1) 40 ,40 ,104
40 T1=T2
41 DO 42 L=1,LMAX

FL=L
T=FL∗∗2
T1=T/RHOMAX+ETA
IF DIVIDE CHECK 58 ,46

58 WRITE OUTPUT TAPE 6 ,158
158 FORMAT (62H DIVISOR RHOMAX IS ZERO IN SIXTH DIVISION OF COULFN SUB

1ROUTINE)
CALL LEAVE
STOP

46 T2=SQRTF(T+ETA2)
FP(L)=(T1∗F(L)−T2∗F(L+1))/FL
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42 GP(L)=(T1∗G(L)−T2∗G(L+1))/FL
IF DIVIDE CHECK 59 ,47

59 WRITE OUTPUT TAPE 6 ,159
159 FORMAT(60H DIVISOR FL IS ZERO IN SEVENTH DIVISION OF COULFN SUBROU

1TINE)
CALL LEAVE
STOP

47 IF ( ISPILL ) 60 ,61 ,60
60 WRITE OUTPUT TAPE 6 ,160 , ISPILL

160 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,21H IN COULFN SUBROUTINE)
61 IF ( JSPILL) 62 ,63 ,62
62 WRITE OUTPUT TAPE 6 ,162 , JSPILL
162 FORMAT(22H OVERFLOW OCCURRED AT I6 ,21H IN COULFN SUBROUTINE)

CALL LEAVE
STOP

63 RETURN
101 WRITE OUTPUT TAPE 6 ,121 ,RHOMAX,DRHOL

GO TO (110 ,110 ,109 ,109) ,IKTRL
109 WRITE OUTPUT TAPE 6 ,114

GO TO 13
102 WRITE OUTPUT TAPE 6 ,122 ,RHOMAX,DRHOL

GO TO(110 ,110 ,111 ,111) ,IKTRL
111 WRITE OUTPUT TAPE 6 ,114

GO TO 31
103 WRITE OUTPUT TAPE 6 ,123 ,RHOMAX,DRHOL

GO TO (110 ,110 ,112 ,112) ,IKTRL
112 WRITE OUTPUT TAPE 6 ,114

GO TO 382
104 WRITE OUTPUT TAPE 6 ,124 ,RHOMAX,DRHOL ,L

GO TO (110 ,110 ,113 ,113) ,IKTRL
113 WRITE OUTPUT TAPE 6 ,114

GO TO 40
105 WRITE OUTPUT TAPE 6 ,125 ,RHOMAX,DRHOL

GO TO (110 ,110 ,115 ,115) ,IKTRL
115 WRITE OUTPUT TAPE 6 ,114

GO TO 12
106 WRITE OUTPUT TAPE 6 ,126 ,RHOMAX,DRHOL

GO TO (110 ,110 ,116 ,116) ,IKTRL
116 WRITE OUTPUT TAPE 6 ,114

GO TO 13
110 RHOMAX=RHOMAX+DRHOL

GO TO 1
121 FORMAT(18H INCREASE RHO MAX=E11 . 4 , 2H+ E11 .4 , 35H A OR B SERIES CONV

1ERGES TOO SLOWLY)
122 FORMAT(18H INCREASE RHO MAX=E11 . 4 , 2H+ E11 .4 , 22H BAD INITIAL WRONSK

1IAN)
123 FORMAT(18H INCREASE RHO MAX=E11 . 4 , 2H+ E11 .4 , 24H L TOO LARGE IN FBA

1R (L) )
124 FORMAT(18H INCREASE RHO MAX=E11 . 4 , 2H+ E11 .4 , 21H BAD WRONSKIAN FOR

1L=I3 )
125 FORMAT(67H SERIES IN PHI0 OR PHI1 IS ZERO, CHECK DATA, IF OK INCRE

1ASE RHOMAX=E11 . 4 , 2H+ E11 . 4 )
126 FORMAT(52H A OR B SERIES DIVERGES TOO QUICKLY INCREASE RHOMAX=E11 .

14 ,2H+ E11 . 4 )
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114 FORMAT(42H RHOMAX INCREASE NOT PERMITTED BY KTRL(13 ) )

SUBROUTINE RMXINC
3 IF (RHOMAX−RHO(ILAST) ) 1 ,2 ,1
1 ILAST=ILAST+1

RHO(ILAST)=RHO(ILAST−1)+DRHOL
DRHO(ILAST−1)=DRHOL
GO TO 3

2 RETURN
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SUBROUTINE PGEN4
IF DIVIDE CHECK 60 ,61

60 WRITE OUTPUT TAPE 6 ,160
160 FORMAT (59H DIVIDE CHECK TRIGGER FOUND ON AT START OF PGEN4 SUBROU

1TINE)
CALL LEAVE
STOP

61 ISPILL=0
JSPILL=0
IF (KTRL(1 ) ) 3 ,4 ,3

3 KTRL(7)=0
KTRL(8)=0
KTRL(9)=0
KTRL(10)=0

4 T1=V/ECM
T2=W/ECM
T10=VS/ECM
T11=WS/ECM
T12=FKAY∗BG
T3=2.∗FKAY/A
IF DIVIDE CHECK 62 ,65

62 WRITE OUTPUT TAPE 6 ,162
162 FORMAT (65H DIVISORS ECM OR A WERE WRONGLY INPUT AS ZERO IN PGEN4

1SUBROUTINE)
CALL LEAVE
STOP

65 T4=T10∗T3
T5=T11∗T3
T6=FKAY∗A
T7=ETA/RHOBC
IF DIVIDE CHECK 63 ,64

63 WRITE OUTPUT TAPE 6 ,163
163 FORMAT(61H DIVISOR RHOBC IS ZERO IN SECOND DIVISION OF PGEN4 SUBRO

1UTINE)
CALL LEAVE
STOP

64 T8=RHOBC∗∗2
T9=ETA∗2 .
I=1

40 EX=EXPF( (RHO( I )−RHOBN)/T6)
IF DIVIDE CHECK 80 ,66

80 WRITE OUTPUT TAPE 6 ,165
165 FORMAT (58H QUANTITY T6 IS ZERO IN THIRD DIVISION OF PGEN4 SUBROUT

1INE)
CALL LEAVE
STOP

66 K=1
41 IF ( I−1) 42 ,43 ,42
42 IF (DRHO( I )−DRHO( I−1)) 43 ,44 ,43
43 HDRHO=DRHO( I )∗ . 5

DEX=EXPF(HDRHO/T6)
44 IF (KTRL(1)−2)53 ,52 ,53
52 IF (RHO( I )−RHOBN) 54 ,55 ,55
54 S1=1.0
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GO TO 68
55 S1=0.0

GO TO 68
53 S1=1./(1.+EX)

IF DIVIDE CHECK 67 ,68
67 WRITE OUTPUT TAPE 6 ,167

167 FORMAT(60H DIVISOR 1.+EX IS ZERO IN FOURTH DIVISION OF PGEN4 SUBRO
1UTINE)
CALL LEAVE
STOP

68 S2=EX∗( S1 ∗∗2)
S4=S2/RHO( I )
IF DIVIDE CHECK 69 ,70

69 WRITE OUTPUT TAPE 6 ,169 , I
169 FORMAT(58H DIVISOR RHO IS ZERO IN FIFTH DIVISION OF PGEN4 SUBROUTI

1NE)
CALL LEAVE
STOP

70 IF (RHO( I )−RHOBC) 9 ,9 ,10
9 S3=T7∗(3.−(RHO( I )∗∗2)/T8)

GO TO 11
10 S3=T9/RHO( I )

11 IF (KTRL(7 ) ) 350 ,300 ,350
300 UCRB( I )=−1.−T1∗S1+S3

FFCR( I )=S1
301 IF (KTRL(8 ) ) 355 ,302 ,355

302 IF (KTRL(1)−1) 309 ,308 ,309
308 S1=EXPF(−((RHO( I )−RHOBNG)/T12 )∗∗2)

IF DIVIDE CHECK 82 ,309
82 WRITE OUTPUT TAPE 6 ,182
182 FORMAT(22H BG IS ZERO IN PGEN SR)

CALL LEAVE
STOP

309 UCIB( I)=−T2∗S1
FFCI( I )=S1

303 IF (KTRL(9 ) ) 360 ,304 ,360
304 USRB( I )=T4∗S4

FFSR( I )=S4
305 IF (KTRL(11 ) ) 501 ,500 ,501
500 IF (KTRL(10))365 ,306 ,365
306 USIB( I )=T5∗S4

FFSI ( I )=S4
307 IF ( I−ILAST) 50 ,200 ,200
350 ITT=1

GO TO 340
355 ITT=2

GO TO 340
340 ITQ=1

IF (ITT−1) 380 ,380 ,381
380 IF (KTRL(7)−1) 352 ,351 ,352
351 TW=HA

TRM=RMA
TN1=FN1A
TN2=FN2A
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GO TO 400
352 TH=HB

TRM=RMB
TN1=FN1B
TN2=FN2B
GO TO 400

381 IF (KTRL(8)−1) 352 ,351 ,352
400 IF (RHO( I )−RHOBN) 410 ,410 ,411
410 TTN=TN1

GO TO 412
411 TTN=TN2

412 T20=RHO( I )/RHOBN
IF (TTN∗LOGF(T20)−80.) 403 ,403 ,409

403 TQ=(T20∗∗TTN−1.)∗RHOBN/(TTN∗FKAY∗A)
IF DIVIDE CHECK 405 ,406

405 TG=T20∗∗(RHOBN/(FKAY∗A))
GO TO 407

406 IF (TQ−80.) 408 ,408 ,409
408 TG=EXPF(TQ)

GO TO 407
409 TF=0.

GO TO 422
407 TFN=1./(1.+TG)

IF (RHO( I )−TRM) 420 ,420 ,419
419 TF=TFN

GO TO 418
420 T21=RHO( I )/TRM

THH=TH∗ (1 .+(2 .∗T21))∗ ( (1 . −T21)∗∗2)
TF=TFN∗(1.+THH)

418 TFF=TF
421 GO TO (422 ,423) , ITQ
422 GO TO (425 ,426 ,427 ,428) , ITT
425 FFCR( I )=TF

UCRB( I )=−1.−T1∗FFCR( I )+S3
GO TO 301

426 FFCI( I )=TF
UCIB( I)=−T2∗FFCI( I )
GO TO 303

427 FFSR( I )=TF
IF (ITQ−1) 470 ,470 ,471

471 USRB( I )=FKAY∗A∗T4∗FFSR( I )
GO TO 305

470 USRB( I )=(T4/2 . )∗FFSR( I )
GO TO 305

428 FFSI ( I )=TF
IF (ITQ−1) 472 ,472 ,473

473 USIB( I )=FKAY∗A∗T5∗FFSI ( I )
GO TO 307

360 ITT=3
IF (KTRL(9)−1) 431 ,431 ,430

430 ITQ=1
GO TO 352

365 ITT=4
IF (KTRL(10)−1) 431 ,431 ,430
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472 USIB( I )=(T5/2 . )∗FFSI ( I )
GO TO 307

431 ITQ=2
GO TO 351

423 T23=(RHOBN/(FKAY∗A) )∗ (T20∗∗TTN)∗TG∗ ( (TFN/RHO( I ) )∗∗2)
T25=T23
IF (RHO( I )−TRM) 460 ,460 ,461

460 T24=6.∗TH∗(1.−T21 )/(TRM∗∗2)
T25=(T24∗TFN)+((1.+THH)∗T23)

461 TF=T25
IF (ITT−3) 427 ,427 ,428

501 T30=0.004927∗ETA∗ECM
IF (RHO( I )−RHOBC) 502 ,502 ,503

502 SOCOUL=T30/(RHOBC∗∗3)
GO TO 504

503 SOCOUL=T30/(RHO( I )∗∗3)
504 USRB( I )=USRB( I )+SOCOUL

GO TO 500
50 I=I+1

EX=EX∗DEX
RHOM=RHO( I−1)+HDRHO
IF (KTRL(1)−2) 153 ,152 ,153

152 IF (RHOM−RHOBN)34 ,35 ,35
34 S1=1.0

GO TO 72
35 S1=0.0

GO TO 72
153 S1=1./(1.+EX)

IF DIVIDE CHECK 71 ,72
71 WRITE OUTPUT TAPE 6 ,171

171 FORMAT(54H DIVISOR 15 ZERO IN SIXTH DIVISION OF PGEN4 SUBROUTINE)
CALL LEAVE
STOP

72 S2=EX∗( S1 ∗∗2)
S4=S2/RHOM
IF DIVIDE CHECK 73 ,74

73 WRITE OUTPUT TAPE 6 ,173
173 FORMAT (62H QUANTITY RHOM IS ZERO IN SEVENTH DIVISION OF PGEN4 SUB

1ROUTINE)
CALL LEAVE
STOP

74 IF (RHOM−RHOBC) 21 ,21 ,22
21 S3=T7∗(3.−(RHOM∗∗2)/T8)

GO TO 23
22 S3=T9/RHOM
23 IF (KTRL(7))1350 ,1300 ,1350

1300 UCRM( I−1)=−1.−T1∗S1+S3
FFCRM( I−1)=51

1301 IF (KTRL(8 ) ) 1355 ,1302 ,1355
1302 IF (KTRL(1)−1) 1309 ,1308 ,1309
1308 S1=EXPF(−((RHOM−RHOBNG)/T12 )∗∗2)
1309 UCIM( I−1)=−T2∗S1

FFCIM( I−1)=S1
1303 IF (KTRL(9 ) ) 1360 ,1304 ,1360
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1304 USRM( I−1)=T4∗S4
FFSRM( I−1)=S4

1305 IF (KTRL( I1 ) ) 1501 ,1500 ,1501
1500 IF (KTRL( I0 ))1365 ,1306 ,1365
1306 USIM( I−1)=T5∗S4

FFSIM( I−1)=S4
1307 IF (K−10) 24 ,40 ,40
1350 ITT=1

GO TO 1340
1355 ITT=2

GO TO 1340
1340 ITQ=1

IF (ITT−1)1380 ,1380 ,1381
1380 IF (KTRL(7)−1) 1352 ,1351 ,1352
1351 TH=HA

TRM=RMA
TN1=FN1A
TN2=FN2A
GO TO 1400

1352 TH=HB
TRM=RMB
TN1=FN1B
TN2=FN2B
GO TO 1400

1381 IF (KTRL(8)−1) 1352 ,1351 ,1352
1400 IF (RHOM−RHOBN) 1410 ,1410 ,1411
1410 TTN=TN1

GO TO 1412
1411 TTN=TN2
1412 T20=RHOM/RHOBN

IF (TTN∗LOGF(T20)−80.) 1403 ,1403 ,1409
1403 TQ=(T20∗∗TTN−1.)∗RHOBN/(TTN∗FKAY∗A)

IF DIVIDE CHECK 1405 ,1406
1405 TG=T20∗∗(RHOBN/(FKAY∗A))

GO TO 1407
1406 IF (TQ−80.) 1408 ,1408 ,1409
1408 TG=EXPF(TQ)

GO TO 1407
1409 TF=0.

GO TO 1422
1407 TFN=1./(1.+TG)

IF (RHOM−TRM) 1420 ,1420 ,1419
1419 TF=TFN

GO TO 1418
1420 T21=RHOM/TRM

TRH=TH∗ (1 .+(2 .∗T21))∗ ( (1 . −T21)∗∗2)
TF=TFN∗(1.+THH)

1418 TFF=TF
1421 GO TO (1422 ,1423) , ITQ
1422 GO TO (1425 ,1426 ,1427 ,1428) , ITT
1425 FFCRM( I−1)=TF

UCRM( I−1)=−1.−T1∗FFCRM( I−1)+S3
GO TO 1301

1426 FFCIM( I−1)=TF
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UCIM( I−1)=−T2∗FFCIM( I−1)
GO TO 1303

1427 FFSRM( I−1)=TF
IF (ITQ−1) 1470 ,1470 ,1471

1471 USRM( I−1)=FKAY∗A∗T4∗FFSRM( I−1)
GO TO 1305

1470 USRM( I−1)=(T4/2 . )∗FFSRM( I−1)
GO TO 1305

1428 FFSIM( I−1)=TF
IF (ITQ−1) 1472 ,1472 ,1473

1473 USIM( I−1)=FKAY∗A∗T5∗FFSIM( I−1)
GO TO 1307

1360 ITT=3
IF (KTRL(9)−1) 1431 ,1431 ,1430

1430 ITQ=1
GO TO 1352

1365 IIT=4
IF (KTRL(10)−1) 1431 ,1431 ,1430

1472 USIM( I−1)=(T5/2 . )∗FFSIM( I−1)
GO TO 1307

1431 ITQ=2
GO TO 1351

1423 T23=(RHOBN/(FKAY∗A) )∗ (T20∗∗TTN)∗TG∗ ( (TFN/RHOM)∗∗2)
T25=T23
IF (RHOM−TRM) 1460 ,1460 ,1461

1460 T24=6.∗TH∗(1.−T21 )/(TRM∗∗2)
T25=(T24∗TFN)+((1.+THH)∗T23)

1461 TF=T25
IF (ITT−3) 1427 ,1427 ,1428

1501 T30=0.004927∗ETA∗ECM
IF (RHOM−RHOBC) 1502 ,1502 ,1503

1502 SOCOUL=T30/(RHOBC∗∗3)
GO TO 1504

1503 SOCOUL=T30/(RHOM∗∗3)
1504 USRM( I−1)=USRM( I−1)+SOCOUL

GO TO 1500
24 K=K+1

EX=EX∗DEX
GO TO 42

200 IF ( ISPILL ) 75 ,76 ,75
75 WRITE OUTPUT TAPE 6 ,175 , ISPILL

175 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,20H IN PGEN4 SUBROUTINE)
76 IF ( JSPILL) 77 ,51 ,77
77 WRITE OUTPUT TAPE 6 ,177 , JSPILL

177 FORMAT(22H OVERFLOW OCCURRED AT I6 ,20H IN PGEN4 SUBROUTINE)
CALL LEAVE
STOP

51 RETURN
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SUBROUTINE INTCTR
DO1 L=1,LMAX
IFIRST=IIN (L)
T=RHO(IFIRST)∗∗ (L−1)
XC1=T∗RHO(IFIRST)
XD1=XC1
FL=L
XCP1=FL∗T
XDP1=XCP1
YC1=0.
YD1=0.
YCP1=0.
YDP1=0.
CALL RKINT
X1(L)=XC1
X2(L)=XD1
Y1(L)=YC1
Y2(L)=YD1
X1P(L)=XCP1
X2P(L)=XDP1
Y1P(L)=YCP1

1 Y2P(L)=YDP1
RETURN
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SUBROUTINE RKINT
IF DIVIDE CHECK 10 ,11

10 WRITE OUTPUT TAPE 6 ,110 ,L , I
110 FORMAT(66H DIVIDE CHECK TRIGGER FOUND ON AT START OF RKINT SUBROUT

1INE FOR L=I3 , 7H AND I=I3 )
CALL LEAVE
STOP

11 ISPILL=0
JSPILL=0

1 FL=L−1
F2L=−1.−FL
F3L=FL∗(FL+1.)
TB=UCRB(IFIRST)+F3L/(RHO(IFIRST)∗∗2)
IF DIVIDE CHECK 12 ,13

12 WRITE OUTPUT TAPE 6 ,112 ,L , I
112 FORMAT(76H DIVISOR RHO(IFIRST)∗∗2 IS ZERO IN FIRST DIVISION OF RKI

1NT SUBROUTINE FOR L=I3 , 7H AND I=I3 )
CALL LEAVE
STOP

13 PCB=TB+USRB(IFIRST)∗FL
PDB=TB+USRB( IFIRST)∗F2L
QCB=UCIB( IFIRST)+USIB( IFIRST)∗FL
QDB=UCIB( IFIRST)+USIB( IFIRST)∗F2L
IK=ILAST−1
DO 6 I=IFIRST , IK

2 HDRHO=.5∗DRHO( I )
DRHO2=(DRHO( I )∗∗2 )∗ . 5
RHOM=RHO( I )+HDRHO
TM=UCRM( I)+F3L/(RHOM∗∗2)
IF DIVIDE CHECK 14 ,15

14 WRITE OUTPUT TAPE 6 ,114 ,L , I
114 FORMAT(70H DIVISOR RHOM∗∗2 IS ZERO IN SECOND DIVISION OF RKINT SUB

1ROUTINE FOR L=I3 , 7H AND I=I3 )
CALL LEAVE
STOP

15 PCM=TM+USRM( I )∗FL
PDM=TM+USRM( I )∗F2L
QCM=UCIM( I )+USIM( I )∗FL
QDM=UCIM( I )+USIM( I )∗F2L
XCPP1=PCB∗XC1−QCB∗YC1
YCPP1=QCB∗XC1+PCB∗YC1
XDPP1=PDB∗XD1−QDB∗YD1
YDPP1=QDB∗XD1+PDB∗YD1
XC2=XC1+XCP1∗HDRHO
YC2=YC1+YCP1∗HDRHO
XD2=XD1+XDP1∗HDRHO
YD2=YD1+YDP1∗HDRHO
XCPP2=PCM∗XC2−QCM∗YC2
YCPP2=QCM∗XC2+PCM∗YC2
XDPP2=PDM∗XD2−QDM∗YD2
YDPP2=QDM∗XD2+PDM∗YD2
DRHO4=.5∗DRHO2
SDRHO=.33333333∗HDRHO
XC3=XC2+XCPP1∗DRHO4



– 79 –

YC3=YC2+YCPP1∗DRHO4
XD3=XD2+XDPP1∗DRHO4
YD3=YD2+YDPP1∗DRHO4
XCPP3=PCM∗XC3−QCW∗YC3
YCPP3=QCM∗XC3+PCM∗YC3
XDPP3=PDM∗XD3−QDM∗YD3
YDPP3=QDM∗XD3+PDW∗YD3
XC4=XC2+XCPP2∗DRHO2+XCP1∗HDRHO
YC4=YC2+YCPP2∗DRHO2+YCP1∗HDRHO
XD4=XD2+XDPP2∗DRHO2+XDP1∗HDRHO
YD4=YD2+YDPP2∗DRHO2+YDP1∗HDRHO
TB=UCRB( I+1)+F3L/(RHO( I +1)∗∗2)
IF DIVIDE CHECK 16 ,17

16 WRITE OUTPUT TAPE 6 ,116 ,L , I
116 FORMAT(74H DIVISOR RHO( I+1)∗∗2 IS ZERO IN THIRD DIVISION FOR RKINT

1 SUBROUTINE FOR L=I3 , 7H AND I=I3 )
CALL LEAVE
STOP

17 PCB=TB+USRB( I+1)∗FL
PDB=TB+USRB( I+1)∗F2L
QCB=UCIB( I+1)+USIB( I+1)∗FL
QDB=UCI8( I+1)+USIB( I+1)∗F2L
XCPP4=PCB∗XC4−QCB∗YC4
YCPP4=QCB∗XC4+PCB∗YC4
XDPP4=PDB∗XD4−QDB∗YD4
YDPP4=QDB∗XD4+PDB∗YD4
SXC=XCPP2+XCPP3
SYC=YCPP2+YCPP3
SXD=XDPP2+XDPP3
SYD=YDPP2+YDPP3
TXC=SXC+XCPP1
TYC=SYC+YCPP1
TXD=SXD+XDPP1
TYD=SYD+YDPP1
TXC1=XC1+DRHO( I )∗ (XCP1+SDRHO∗TXC)
TYC1=YC1+DRHO( I )∗ (YCP1+SDRHO∗TYC)
TXD1=XD1+DRHO( I )∗ (XDP1+SDRHO∗TXD)
TYD1=YD1+DRWO( I )∗ (YDP1+SDRHO∗TYD)
TXCP1=XCP1+SDRHO∗(TXC+SXC+XCPP4)
TYCP1=YCP1+SDRHO∗(TYC+SYC+YCPP4)
TXDP1=XDP1+SDRHO∗(TXD+SXD+XDPP4)
TYDP1=YDP1+SDRHO∗(TYD+SYD+YDPP4)
IF ( JSPILL) 20 ,21 ,20

20 RENORM=MAX1F(ABSF(XC1) ,ABSF(YC1) ,ABSF(XCP1) ,ABSF(YCP1) ,ABSF(XD1) ,
1ABSF(YD1) ,ABSF(XDP1) ,ABSF(YDP1) )
XC1=XC1/RENORM
YC1=YC1/RENORM
XCP1=XCP1/RENORM
YCP1=YCP1/RENORM
XD1=XD1/RENORM
YD1=YD1/RENORM
XDP1=XDP1/RENORM
YDP1=YDP1/RENORM
WRITE OUTPUT TAPE 6 ,200 ,RENORM,L ,RHO( I )
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200 FORMAT(24H RENORMALIZATION FACTOR=E16 .9 , 22H IN RKINT FOR CODED L=I
13 ,9H AND RHO=E16 . 9 )
JSPILL=0
GO TO2

21 XC1=TXC1
YC1=TYC1
XD1=TXD1
YD1=TYD1
XCP1=TXCP1
YCP1=TYCP1
XDP1=TXDP1
YDP1=TYDP1

6 CONTINUE
IF ( ISPILL ) 30 ,31 ,30

30 WRITE OUTPUT TAPE 6 ,130 , ISPILL ,L , I
130 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,27H IN RKINT SUBROUTINE FOR L=

1 I3 . 7H AND I=I3 )
31 IF ( JSPILL) 32 ,4 ,32
32 WRITE OUTPUT TAPE 6 ,132 , JSPILL ,L , I

132 FORMAT(22H OVERFLOW OCCURRED AT I6 ,27H IN RKINT SUBROUTINE FOR L=I
13 ,7H AND I=I3 )
CALL LEAVE
STOP

4 RETURN
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SUBROUTINE CSUBL
IF DIVIDE CHECK 50 ,51

50 WRITE OUTPUT TAPE 6 ,150
150 FORMAT (59H DIVIDE CHECK TRIGGER FOUND ON AT START OF CSUBL SUBROU

1TINE)
CALL LEAVE
STOP

51 ISPILL=0
JSPILL=0
DO 40 L=1,LMAX
XNORM1=MAX1F(ABSF(X1(L) )∗ABSF(Y1(L) ) ,ABSF(X1P(L) ) ,ABSF(Y1P(L ) ) )
TX1L=N1(L)/XNORM1
TY1L=Y1(L)/XNORM1
TX1PL=N1P(L)/XNORM1
TY1PL=Y1P(L)/XNORM1
FNORM=MAX1F(F(L) ,G(L) ,FP(L) ,GP(L) )
TFL=F(L)/FNORM
TGL=G(L)/FNORM
TFPL=FP(L)/FNORM
TGPL=GP(L)/FNORM
CO1=TFL∗TY1PL−TFPL∗TY1L
CO2=TFPL∗TX1L−TFL∗TX1PL
CO3=TY1L∗TGPL−TY1PL∗TGL+TX1L∗TFPL−TX1PL∗TFL
CO4=TX1PL∗TGL−TX1L∗TGPL+TY1L∗TFPL−TY1PL∗TFL
CO7=1.0/(CO3∗∗2+CO4∗∗2)
IF DIVIDE CHECK 52 ,53

52 WRITE OUTPUT TAPE 6 ,152
152 FORMAT(54H DIVISOR IS ZERO IN FIRST DIVISION OF CSUBL SUBROUTINE)

CALL LEAVE
STOP

53 CR1(L)=(CO1∗CO3+CO2∗CO4)∗CO7
CI1 (L)=(CO2∗CO3−CO1∗CO4)∗CO7
XNORM2=MAX1F(ABSF(X2(L) ) ,ABSF(Y2(L) ) ,ABSF(X2P(L) ) ,ABSF(Y2P(L ) ) )
TX2L=N2(L)/XNORM2
TY2L=Y2(L)/XNORM2
TX2PL=N2P(L)/XNORM2
TY2PL=Y2P(L)/XNORM2
CO1=TFL∗TY2PL−TFPL∗TY2L
CO2=TFPL∗TX2L−TFL∗TX2PL
CO3=TY2L∗TGPL−TY2PL∗TGL+TX2L∗TFPL−TX2PL∗TFL
CO4=TX2PL∗TGL−TX2L∗TGPL+TY2L∗TFPL−TY2PL∗TFL
CO7=1.0/(CO3∗∗2+CO4∗∗2)
IF DIVIDE CHECK 54 ,55

54 WRITE OUTPUT TAPE 6 ,154
154 FORMAT (55H DIVISOR IS ZERO IN SECOND DIVISION OF CSUBL SUBROUTINE

1)
CALL LEAVE
STOP

55 CR2(L)=(CO1∗CO3+CO2∗CO4)∗CO7
40 CI2 (L)=(CO2∗CO3−CO1∗CO4)∗CO7

IF ( ISPILL ) 56 ,57 ,56
56 WRITE OUTPUT TAPE 6 ,156 , ISPILL ,L
156 FORMAT (23H UNDERFLOW OCCURRED AT I6 ,27H IN CSUBL SUBROUTINE FOR L

1=I3 )
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57 IF ( JSPILL) 58 ,59 ,58
58 WRITE OUTPUT TAPE 6 ,158 , JSPILL , L

158 FORMAT (22H OVERFLOW OCCURRED AT I6 ,27H IN CSUBL SUBROUTINE FOR L=
1 I3 )
CALL LEAVE
STOP

59 RETURN
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SUBROUTINE AB
IF DIVIDE CHECK 1 ,2

1 WRITE OUTPUT TAPE 6 ,101
101 FORMAT (56H DIVIDE CHECK TRIGGER FOUND ON AT START OF AB SUBROUTIN

1E)
CALL LEAVE
STOP

2 ISPILL=0
JSPILL=0
FKAYD=1./FKAY
IF DIVIDE CHECK 3 ,4

3 WRITE OUTPUT TAPE 6 ,103
103 FORMAT(38H DIVISOR FKAY IS ZERO IN AB SUBROUTINE)

CALL LEAVE
STOP

4 DO 20 J=1,JMAX
ASUMR=0.
ASUMI=0.
BSUMR=0.
BSUMI=0.
DO 10 L=1,LMAX
FL=L
ATR1=FL∗CR1(L)+(FL−1.)∗CR2(L)
ATI1=FL∗CI1 (L)+(FL−1.)∗CI2 (L)
BTR1=CR1(L)−CR2(L)
BTI1=CI1 (L)−CI2 (L)
ATR2=ATR1∗EXSGMR(L)−(ATI1∗EXSGMI(L) )
ATI2=ATR1∗EXSGMI(L)+(ATI1∗EXSGMR(L) )
BTR2=BTR1∗EXSGMR(L)−(BTI1∗EXSGMI(L) )
BTI2=BTR1∗EXSGMI(L)+(BTI1∗EXSGMR(L) )
ASUMR=ASUMR+(ATR2∗P(L , J ) )
ASUMI=ASUMI+(ATI2∗P(L , J ) )
BSUMR=BSUMR+(BTR2∗PP(L , J ) )

10 BSUMI=BSUMI+(BTI2∗PP(L , J ) )
AR(J)= FCR(J)+(FKAYD∗ASUMR)
AI( J)=FCI( J)+(FKAYD∗ASUMI)
BR(J)= FKAYD∗BSUMI

20 BI ( J)= −FKAYD∗BSUMR
IF ( ISPILL ) 30 ,31 ,30

30 WRITE OUTPUT TAPE 6 ,130 , ISPILL
130 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,17H IN AB SUBROUTINE)
31 IF ( JSPILL) 32 ,33 ,32
32 WRITE OUTPUT TAPE 6 ,132 , JSPILL

132 FORMAT (22H OVERFLOW OCCURRED AT I6 ,17H IN AB SUBROUTINE)
CALL LEAVE
STOP

33 RETURN
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SUBROUTINE SGSGCP
IF DIVIDE CHECK 10 ,11

10 WRITE OUTPUT TAPE 6 ,110
110 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF SGSGCP SUBRO

1UTINE)
CALL LEAVE
STOP

11 ISPILL=0
JSPILL=0
DO 5 J=1,JMAX
SGMATH(J)=AR(J)∗∗2.+AI( J )∗∗2.+BR(J)∗∗2.+BI ( J )∗∗2 .
POLTH(J)= ( 2 . ∗ (AR(J )∗BR(J)+AI( J )∗BI ( J ) ) ) /SGMATH(J )
IF DIVIDE CHECK 12 ,13

12 WRITE OUTPUT TAPE 6 ,112 , J
112 FORMAT(30H DIVISOR SGMATH IS ZERO FOR J=13 ,21H IN SGSGCP SUBROUTIN

1E)
CALL LEAVE
STOP

13 SGMAC(J)=FCR(J)∗∗2.+FCI( J )∗∗2 .
IF (ETA) 7 ,7 ,8

8 SRATIO(J)=SGMATH(J )/SGMAC(J )
IF DIVIDE CHECK 14 ,15

14 WRITE OUTPUT TAPE 6 ,114 , J
114 FORMAT(29H DIVISOR SGMAC IS ZERO FOR J=13 ,21H IN SGSGCP SUBROUTINE

1)
CALL LEAVE
STOP

15 GO TO 5
7 SRATIO(J)=0.
5 CONTINUE

IF ( ISPILL ) 16 ,17 ,16
16 WRITE OUTPUT TAPE 6 ,116 , ISPILL

116 FORMAT (23H UNDERFLOW OCCURRED AT 16 ,21H IN SGSGCP SUBROUTINE)
17 IF ( JSPILL) 18 ,19 ,18
18 WRITE OUTPUT TAPE 6 ,118 , JSPILL

118 FORMAT(22H OVERFLOW OCCURRED AT 16 ,21H IN SGSGCP SUBROUTINE)
CALL LEAVE
STOP

19 RETURN
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SUBROUTINE SIGMAR
ISPILL=0
JSPILL=0
FL=0.
SGMRTH=0.
CPI=(12.56637060)/(FKAY∗∗2)
DO 20 L=I ,LMAX
SGMRTH=SGMRTH+FL∗(C12(L)−(C12(L))∗∗2−(CR2(L) )∗∗2)
FL=FL+1.0

20 SGMRTH=SGMRTH+FL∗(CI1 (L)−(CI1 (L))∗∗2−(CR1(L) )∗∗2)
SGMRTH=CPI∗SGMRTH
IF ( ISPILL ) 10 ,11 ,10

10 WRITE OUTPUT TAPE 6 ,110 , ISPILL
110 FORMAT(23H UNDERFLOW OCCURRED AT 16 ,21H IN SIGMAR SUBROUTINE)
11 IF ( JSPILL) 12 ,13 ,12
12 WRITE OUTPUT TAPE 6 ,112 , JSPILL
112 FORMAT(22H OVERFLOW OCCURRED AT 16 ,21H IN SIGMAR SUBROUTINE)

CALL LEAVE
STOP

13 RETURN
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SUBROUTINE CHISQ
IF DIVIDE CHECK 10 ,11

10 WRITE OUTPUT TAPE 6 ,110
110 FORMAT(59H DIVIDE CHECK TRIGGER FOUND ON AT START OF CHISQ SUBROUT

1INE)
CALL LEAVE
STOP

11 ISPILL=0
JSPILL=0
CHI2ST=0
CHI2PT=0
DO 20 J=1,JMAX
CHI2S( J)= ( (SGMATH(J)−SGMAEX(J ) )/DSGMEX(J ) )∗∗2 .
CHI2P(J)= ( (POLTH(J)−POLEX(J ) )/DPOLEX(J ) )∗∗2 .
IF DIVIDE CHECK 14 ,15

14 WRITE OUTPUT TAPE 6 ,114 , J
114 FORMAT(40H DIVISOR DSGMEX OR DPOLEX IS ZERO FOR J=13 ,20H IN CHISQ

1SUBROUTINE)
CALL LEAVE
STOP

15 CHI2ST=CHI2ST + CHI2S( J )
CHI2( J)=CHI25( J)+CHI2P(J )

20 CHI2PT=CHI2PT+CHI2P(J )
CHI2T=CHI2ST+CHI2PT
IF ( ISPILL ) 16 ,17 ,16

16 WRITE OUTPUT TAPE 6 ,116 , ISPILL
116 FORMAT(23H UNDERFLOW OCCURRED AT 16 ,20H IN CHISQ SUBROUTINE)
17 IF ( ISPILL ) 18 ,19 ,18
18 WRITE OUTPUT TAPE 6 ,118 , JSPILL
118 FORMAT(22H OVERFLOW OCCURRED AT 16 ,20H IN CHISQ SUBROUTINE)

CALL LEAVE
STOP

19 RETURN
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SUBROUTINE OUTPT4
NPGS=0
CALL SKIP(K,NPGS,NUMRUN)
WRITE OUTPUT TAPE 6 ,245 ,NUMPRG

245 FORMAT (16H0PROGRAM NUMBER I5 )
DO 8 I =1 ,13
WRITE OUTPUT TAPE 6 ,250 , I , (KTRL( I ) )

250 FORMAT (6H KTRL( I2 , 2H)=I2 )
8 CONTINUE

WRITE OUTPUT TAPE 6 ,12
12 FORMAT (11H0BASIC DATA)

FKAYA=FKAY∗A
FKAYB=FKAY∗BG
WRITE OUTPUT TAPE 6 ,14 ,FMI,FMB,ELAB,ZZ ,V,W,A,RO,VS,WS,RC,BG,RG,

14 FORMAT(7H0MSUBI=E16 .9 , 10H MSUBB=E16 .9 , 10H ELAB=E16 .9 , 10H
1 ZZP=E16 .9/7H0 V=E16 .9 , 10H W=E16 .9 , 10H A=E16 . 9 ,
210H RO=E16 .9/7H0 VS=E16 .9 , 10H WS=E16 .9 , 36H
3 RC=E16 .9/59H0
4 BG=E16 .9 , 10H RG=E16 . 9 )
WRITE OUTPUT TAPE 6 ,16 ,RHOBN,RHOBC,RHOBNG,ECM,ETA,FKAY,FKAYA,FKAYB

16 FORMAT(7H0RHOBN=E16 .9 , 10H RHOBC=E16 .9 , 10H RHOBNG=E16 .9 , 10H
1 ECM=E16 .9/7H0 ETA=E16 .9 , 10H K=E16 .9/10H KA=E16 . 9 ,
210H KB=E16 . 9 )
KT=KTRL(7)+KTRL(8)+KTRL(9)+KTRL(10)
IF (KT) 13 ,1818 ,13

13 WRITE OUTPUT TAPE 6 ,150 ,HA,RMA,FN1A,FN2A,PMA,HB,RMB,FN1B,FN2B,PMB
150 FORMAT(7H0 HA=E16 . 9 , 7H RMA=E16 . 9 , 7H N1A=E16 . 9 , 7H N2A=E16 . 9

1 ,7H PMA=E16 .9/7H HB=E16 . 9 , 7H RMB=E16 . 9 , 7H N1B=E16 . 9 , 7H
2N2B=E16 . 9 , 7H PMB=E16 . 9 )

1818 WRITE OUTPUT TAPE 6 ,18 ,RHOMAX,LMAXM
18 FORMAT (17H0INTEGRATION DATA/8H0RHOMAX=E16 .9 , 10H LMAXM=I5 )

WRITE OUTPUT TAPE 6 ,220 ,NMAX
220 FORMAT (6H0NMAX=I5 )

WRITE OUTPUT TAPE 6 ,24
24 FORMAT (6H0RHOIN)

NOLINE=50
K=20
DO 40 I=1, NMAX,6
IF (K−NOLINE) 30 ,29 ,29

29 CALL SKIP(K,NPGS,NUMRUN)
30 M=XMINOF( I+5,NMAX)

K=K+1
WRITE OUTPUT TAPE 6 ,32 , (RHOIN(J ) , J=I ,M)

32 FORMAT(1H E19 . 9 , 5 E20 . 9 )
40 CONTINUE

WRITE OUTPUT TAPE 6 ,41
41 FORMAT (7H0DRHOIN)

DO 60 I=1,NMAX,6
IF (K−NOLINE) 45 ,43 ,43

43 CALL SKIP(K,NPGS,NUMRUN)
45 M=XMINOF( I+5,NMAX−1)

K=K+1
WRITE OUTPUT TAPE 6 ,32 , (DRHOIN(J ) , J=I ,M)

60 CONTINUE
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WRITE OUTPUT TAPE 6 ,118 ,SGMRTH
118 FORMAT(12H0SIGMAR(TH)=E16 . 9 )
15 IF (KTRL(2)−1) 1900 ,20 ,1900
20 WRITE OUTPUT TAPE 6 ,119 ,CHI2ST ,CHI2PT,CHI2T
119 FORMAT (25H0SUM OF CHI SQUARE SIGMA=E16 .9/23H0SUM OF CHI SQUARE PO

1L=E16 .9/25H0SUM OF CHI SQUARE TOTAL=E16 . 9 )
21 CALL SKIP(K,NPGS,NUMRUN)

WRITE OUTPUT TAPE 6 ,200
200 FORMAT (113H THETA SIGMATH SIG−SIGC

1 POL TH SIGMA EX POL EX)
DO 90 I=1,JMAX
IF (K−NOLINE)75 ,70 ,70

70 CALL SKIP(K,NPGS,NUMRUN)
75 K=K+1

WRITE OUTPUT TAPE 6 ,32 ,THETAD( I ) ,SGMATH( I ) ,SRATIO( I ) ,POLTH( I ) ,
1SGMAEX( I ) ,POLEX( I )

90 CONTINUE
GO TO 299

1900 CALL SKIP (K,NPGS,NUMRUN)
WRITE OUTPUT TAPE 6 ,1905

1905 FORMAT (120H THETA SIGMATH
1 SIG−SIGC POL TH
2)
DO 1920 I=1,JMAX
IF (K−NOLINE) 1910 ,1908 ,1908

1908 CALL SKIP (K,NPGS,NUMRUN)
1910 K=K+1

WRITE OUTPUT TAPE 6 ,1919 ,THETAD( I ) ,SGMATH( I ) ,SRATIO( I ) ,POLTH( I )
1919 FORMAT (1H E20 . 9 , 3 E30 . 9 )
1920 CONTINUE
299 IF (KTRL(6)−1) 300 ,121 ,300
300 IF (KTRL(12)−1) 25 ,1700 ,25
1700 CALL SKIP(K,NPGS,NUMRUN)

WRITE OUTPUT TAPE 6 ,1701
1701 FORMAT (92H RHO( I ) FFCR FFCI

1 FFSR FFSI )
DO 1709 I=1,ILAST
IF (K−NOLINE) 1703 ,1702 ,1702

1702 CALL SKIP (K,NPGS,NUMRUN)
1703 WRITE OUTPUT TAPE 6 ,158 ,RHO( I ) ,FFCR( I ) ,FFCI( I ) ,FFSR( I ) , FFSI ( I )
158 FORMAT(1H 5E20 . 9 )

1709 CONTINUE
25 IF (KTRL(2)−1) 23 ,22 ,23
22 CALL SKIP (K,NPGS,NUMRUN)

WRITE OUTPUT TAPE 6 ,95
95 FORMAT(120H THETA DSIGMA EX DPOL EX

1 CHI SQUARE SIGMA CHI SQUARE POL CHI SQUARE TOTAL )
DO 120 J=1,JMAX
IF (K−NOLINE) 97 ,96 ,96

96 CALL SKIP(K,NPGS,NUMRUN)
97 K=K+1

WRITE OUTPUT TAPE 6 ,32 ,THETAD(J ) ,DSGMEX(J ) ,DPOLEX(J )∗CHI2S( J ) ,
1CHI2P(J ) )CHI2( J )

120 CONTINUE
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23 CALL SKIP(K,NPGS,NUMRUN)
1623 WRITE OUTPUT TAPE 6 ,1150
1150 FORMAT (120H L REAL C(L+l /2) IMA

1G C(L+1/2) REAL C(L−1/2) IMAG C(L−1/2)
2)
DO 160 L=1,LMAX
IF (K−NOLINE) 155 ,153 ,153

153 CALL SKIP (K,NPGS,NUMRUN)
155 K=K+1

L1=L−1
WRITE OUTPUT TAPE 6 ,1156 ,L1 ,CR1(L) , CI1 (L) ,CR2(L) , CI2 (L)

1156 FORMAT (1H I11 , E30 . 9 , 3 E25 . 9 )
160 CONTINUE
121 RETURN
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SUBROUTINE SKIP(K,NPGS,NUMRUN)
NPGS=NPGS+1
WRITE OUTPUT TAPE 6 ,1510 , (NUMRUN( I ) , I =1 ,5) ,NPGS

1510 FORMAT(12H1RUN NUMBER=I2 , 1H−I2 , 1H−I4 , 3H −I3 , 3H −I3 , 79H
1 PA
2GE 15/)
K=0
RETURN

SUBROUTINE LEAVE
CALL PDUMP(A,ZZ)
CALL CTRL4
RETURN
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∗ CARDS COLUMN
∗ FAP

COUNT 43
∗SPILL SUBROUTINE

ENTRY SPILL
SPILL STZ∗ 1 ,4 STORE ZERO IN JSPILL

STZ∗ 2 ,4 STORE ZERO IN ISPILL
STZ 0 STORE ZERO IN LOCATION 00000
CAL 1 ,4
STA AA41 SET ADDRESS AA41 ,
STA AA36 AA36 TO JSPILL
CAL 2 ,4 SET ADDRESS AA31
STA AA31 TO ISPILL
CLA∗ 3 ,4 SET COMMON STORAGE
STO AA45
CLA∗ 4 ,4 SET COMMON STORAGE
STO AA46
CAL AA47 PLACE TRANSFER
SLW 8 INSTRUCTION IN LOCATION 8
TRA 5 ,4 EXIT TO MAIN PROGRAM

AA16 LDI 0 ENTRY IN CASE OF OVER−OR UNDERFLOW
LFT 4 TEST FOR OVERFLOW
TRA AA36 TRANSFER IN CASE OF OVERFLOW
LFT 16
TRA AA24 TRANSFER IN CASE OF UNDERFLOW
TRA∗ 0 TRANSFER TO MAIN PROGRAM, NO UFLOW

AA24 LNT 1 TEST FOR UNDERFLOW
TRA∗ 0 UNDERFLOW IN AC ONLY
CAL 0 PLACE LOCATION AT WHICH
SUB AA35 UNDERFLOW OCCURRED IN AC
LLS 18 SHIFT LEFT 18

AA31 STD AA31 STORE IN ISPILL
CLA AA46 SET AC, MQ WITH
LDQ AA46 SPECIFIED CONSTANTS
TRA∗ 0 EXIT TO MAIN PROGRAM

AA35 HTR 1 CONSTANT
AA36 CLA AA36 TEST IF JSPILL ZERO

TNZ AA42 TRANSFER IN CASE JSPILL NON−ZERO
CAL 0 PLACE LOCATION AT WHICH OVERFLOW OCCURRED
SUB AA35 IN AC
LLS 18 SHIFT LEFT 18

AA41 STD AA41 STORE IN JSPILL
AA42 CLA AA45 SET AC,MQ WITH SPECIFIED CONSTANTS

LDQ AA45
TRA∗ 0 EXIT TO MAIN PROGRAM

AA45 HTR 0 COMMON STORAGE
AA46 HTR 0 COMMON STORAGE
AA47 TRA AA16 INSTRUCTION TO BE INSERTED AT LOC. 8

END



VII. Typical Input and Output

A. Input Data for Protons against Copper at 9.75 MeV

3
22

1960
0
0
4
0
1
1
0
1
0
0
0
0
0
0
0
1

+0.10000000 +01
+0.64000000 +02
+0.97500000 +01
+0.29000000 +02
+0.12000000 +01
+0.62000000 +02
+0.85000000 +01
+0.12000000 +01
+0.52000000 +00
−0.40000000 +01
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00

1
1
1
1
1
1
3

+0.62500000 −01
+0.50000000 +00
+0.10000000 +02

+0.62500000 −01
+0.25000000 +00

10
32

+0.15200000 +02
+0.20300000 +02
+0.25400000 +02
+0.28000000 +02
+0.30400000 +02
+0.33000000 +02
+0.35500000 +02
+0.39000000 +02
+0.40600000 +02
+0.43000000 +02
+0.45600000 +02
+0.47000000 +02
+0.507000000+02
+0.51500000 +02
+0.54000000 +02
+0.55700000 +02
+0.57000000 +02
+0.60000000 +02
+0.60800000 +02
+0.65500000 +02
+0.65800000 +02
+0.69000000 +02
+0.70800000 +02
+0.75500000 +02
+0.75900000 +02
+0.80900000 +02
+0.85900000 +02
+0.86000000 +02
+0.90900000 +02
+0.95500000 +02
+0.95900000 +02
+0.10000000 +03
+0.38650000 +04
+0.97340000 +03
+0.42470000 +03
+0.00000000 +00
+0.22690000 +03
+0.00000000 +00
+0.13460000 +03
+0.00000000 +00
+0.82920000 +02
+0.00000000 +00
+0.47660000 +02
+0.00000000 +00
+0.22870000 +02
+0.00000000 +00
+0.00000000 +00
+0.12410000 +02
+0.00000000 +00
+0.00000000 +00
+0.64560000 +01
+0.00000000 +00

+0.40750000 +01
+0.00000000 +00
+0.33390000 +01
+0.00000000 +00
+0.33560000 +01
+0.37570000 +01
+0.38570000 +01
+0.00000000 +00
+0.38460000 +01
+0.00000000 +00
+0.37570000 +01
+0.00000000 +00
+0.39800000 +03
+0.35500000 +02
+0.16700000 +02
+0.10000000 +30
+0.90800000 +01
+0.10000000 +30
+0.53800000 +01
+0.10000000 +30
+0.37300000 +01
+0.10000000 +30
+0.19100000 +01
+0.10000000 +30
+0.91500000 +00
+0.10000000 +30
+0.10000000 +30
+0.49600000 +00
+0.10000000 +30
+0.10000000 +30
+0.25800000 +00
+0.10000000 +30
+0.16300000 +00
+0.10000000 +30
+0.13400000 +00
+0.10000000 +30
+0.13400000 +00
+0.15000000 +00
+0.15400000 +00
+0.10000000 +30
+0.15400000 +00
+0.10000000 +30
+0.15000000 +00
+0.10000000 +30
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
−0.20000000 −01
+0.00000000 +00
+0.10000000 −01
+0.00000000 +00
−0.30000000 −01
+0.00000000 +00
−0.60000000 −01
+0.00000000 +00
−0.10000000 +00

+0.00000000 +00
−0.16000000 +00
−0.20000000 +00
+0.00000000 +00
−0.17000000 +00
−0.17000000 +00
+0.00000000 +00
−0.10000000 +00
+0.00000000 +00
+0.10000000 −01
+0.00000000 +00
+0.20000000 +00
+0.00000000 +00
+0.00000000 +00
+0.00000000 +00
+0.13000000 +00
+0.00000000 +00
+0.70000000 −01
+0.00000000 +00
−0.20000000 −01
+0.10000000 +30
+0.10000000 +30
+0.10000000 +30
+0.30000000 −01
+0.10000000 +30
+0.40000000 −01
+0.10000000 +30
+0.30000000 −01
+0.10000000 +30
+0.30000000 −01
+0.10000000 +30
+0.30000000 −01
+0.10000000 +30
+0.40000000 −01
+0.40000000 −01
+0.10000000 +30
+0.40000000 −01
+0.30000000 −01
+0.10000000 +30
+0.50000000 −01
+0.10000000 +30
+0.40000000 −01
+0.10000000 +30
+0.60000000 −01
+0.10000000 +30
+0.10000000 +30
+0.10000000 +30
+0.60000000 −01
+0.10000000 +30
+0.50000000 −01
+0.10000000 +30
+0.60000000 −01

100
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B. Output Listing
RUN NUMBER= 2−40−1961 − 1 − 1
PAGE 1

PROGRAMNUMBER 4

KTRL( 1)=0
KTRL( 2)=1
KTRL( 3)=1
KTRL( 4)=0
KTRL( 5)=1
KTRL( 6)=0
KTRL( 7)=0
KTRL( 8)=0
KTRL( 9)=0
KTRL(10)=0
KTRL(11)=0
KTRL(12)=0
KTRL(13)=1

BASIC DATA

MSUB1= 0.099999994E 01 MSUBB= 0.639999993E 02 ELAB= 0.974999994E 01 ZZP= 0.289999999E 02

V= 0.619999997E 02 W= 0.849999994E 01 A= 0.519999996E 00 RO= 0.119999997E 01

VS=−0.399999999E 01 WS= 0 . RC= 0.119999997E 01

9 BG= 0 . RG= 0 .

RHOBN= 0.393980615E 01 RHOBC= 0.323980615E 01 RHOBNG= 0 . ECM= 0.959999986E 01

ETA= 0.146788672E 01 K= 0.674959674E 00 KA= 0.350979023E−00 KB= 0 .

INTEGRATION DATA

RHOMAX= 0.099999994E 02 LMAXM= 10

NMAX= 3

RHOIN

0.625000000E−01 0.500000000E 00 0.099999994E 02

DRHOIN

0.625000000E−01 0.250000000E−00

SIGMAR(TH)= 0.668857820E 02

SUM OF CHI SQUARE SIGMA= 0.587550342E 02

SUM OF CHI SQUARE POL= 0.999665476E 02

SUM OF CHI SQUARE TOTAL= 0.158721581E 03
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VIII. Further Subroutines and Programs in
Preparation

The following subroutines are presently being prepared at UCLA:
Subroutine TV

This subroutine is designed to output on CRT and on film various required curves
such as σ(θ) vs θ, σ(θ)/σc(θ) vs θ, P (θ) vs θ.
Subroutine RHOBEG

This subroutine will make use of the quantities IIN(L) to allow the numerical integra-
tions to start at different values of ρ depending upon ` in order to speed up the numerical
integration.
Subroutine FLUX

This subroutine will if desired compute the normalized total wave functions, the scat-
tered flux ~j, the divergence and the curl of ~j at specified values of ρ and θ.

All the above subroutines will of course require some modification of the basic program.
The following programs are presently being prepared at UCLA:

Program SCAT 3
This program will be similar to program SCAT 4 except that it will treat incident and

target particles of zero spin, thus speeding up the calculation for that case.
Program SCAT 5

This is a modified version of program SCAT 4 offering a simplified input and using
only as many `’s as may be significant in the C`’s calculations.
Program SCAT K

This is a modified version of program SCAT 4 designed to analyze the scattering of
K-mesons against complex nuclei, including the use of an approximate Klein-Gordon
equation, relativistic kinematic corrections, and averaging of the cross sections over angles,
energies, and representative nuclei.
Program SCAT 6

This is a modified version of program SCAT 4 designed to calculate cross sections and
polarization of spin 1 particles scattered by 0 spin targets.
Program SEEK 4

This is a program designed to search automatically the parameter space so as to
minimize χ2.
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